Stroke-heart syndrome – cardiac complications in ischemic stroke patients
Authors:
P. Mikulenka 1; M. Mihalovič 2; T. Peisker 1; P. Toušek 2; I. Štětkářová 1
Authors‘ workplace:
Neurologická klinika 3. LF UK a FN Královské Vinohrady, Praha
1; Kardiologická klinika 3. LF UK a FN Královské Vinohrady, Praha
2
Published in:
Cesk Slov Neurol N 2024; 87(2): 101-106
Category:
Review Article
doi:
https://doi.org/10.48095/cccsnn2024101
Overview
Patients with ischemic stroke face an increased risk of a broad range of cardiovascular complications. These may manifest as acute myocardial injury, acute coronary syndrome, left ventricular dysfunction (including Takotsubo syndrome). Furthermore, severe arrhythmias or sudden cardiac death may also occur. In addition to these clinically manifested complications, oligosymptomatic abnormalities such as elevation of specific biomarkers or ECG changes occur in some patients. These complications are associated with more severe neurological disability and higher mortality in patients with acute stroke. The diagnosis and treatment of cardiac complications in patients with stroke has its own specificities and depends mainly on the type of stroke. The pathophysiology of these complications remains partly unclear. According to the new concept of the stroke heart syndrome, it appears that, in addition to the traditional vascular risk factors, other underlying mechanisms, such as autonomic dysregulation or systemic inflammatory response arising as a consequence of brain tissue damage during stroke are involved in the development of early cardiac complications. Despite growing interest in this issue and new insights into its pathophysiology, specific therapies for this so-called stroke-heart syndrome are still lacking. In routine clinical practice, the role of the neurologist in the early diagnosis and treatment of cardiac complications in patients after acute stroke is crucial.
Keywords:
acute coronary syndrome – stroke – cardiac complications – cardiac arrhythmias – stroke-heart syndrome
Sources
1. Prosser J, MacGregor L, Lees KR et al. Predictors of early cardiac morbidity and mortality after ischemic stroke. Stroke 2007; 38 (8): 2295–2302. doi: 10.1161/STROKEAHA.106.471813.
2. Scheitz JF, Sposato LA, Schulz-Menger J et al. Stroke-heart syndrome: recent advances and challenges. J Am Heart Assoc 2022; 11 (17): e026528. doi: 10.1161/JAHA.122.026528.
3. Sposato LA, Lam M, Allen B et al. First-ever ischemic stroke and increased risk of incident heart disease in older adults. Neurology 2020; 94 (15): e1559–e1570. doi: 10.1212/WNL.0000000000009234.
4. Scheitz JF, Nolte CH, Doehner W et al. Stroke–heart syndrome: clinical presentation and underlying mechanisms. Lancet Neurol 2018; 17 (12): 1109–1120. doi: 10.1016/S1474-4422 (18) 30336-3.
5. Scheitz JF, Mochmann HC, Erdur H et al. Prognostic relevance of cardiac troponin T levels and their dynamic changes measured with a high-sensitivity assay in acute ischaemic stroke: analyses from the TRELAS cohort. Int J Cardiol 2014; 177 (3): 886–893. doi: 10.1016/j.ijcard.2014.10.036.
6. Sposato LA, Hilz MJ, Aspberg S et al. Post-stroke cardiovascular complications and neurogenic cardiac injury: JACC state-of-the-art review. J Am Coll Cardiol 2020; 76 (23): 2768–2785. doi: 10.1016/j.jacc.2020.10.009.
7. Buckley BJR, Harrison SL, Hill A et al. Stroke-heart syndrome: incidence and clinical outcomes of cardiac complications following stroke. Stroke 2022; 53 (5): 1759–1763. doi: 10.1161/STROKEAHA.121.037316.
8. Johnston KC, Li JY, Lyden PD et al. Medical and neurological complications of ischemic stroke: experience from the RANTTAS trial. RANTTAS Investigators. Stroke 1998; 29 (2): 447–453. doi: 10.1161/01.str.29.2.447.
9. Lettow I, Jensen M, Schlemm E et al. Serious adverse events and their impact on functional outcome in acute ischemic stroke in the WAKE-UP trial. Stroke 2021; 52 (12): 3768–3776. doi: 10.1161/STROKEAHA.120.033425.
10. Thygesen K, Alpert JS, Jaffe AS et al. Fourth universal definition of myocardial infarction (2018). Circulation 2018; 138 (20): e618–e651. doi: 10.1161/CIR.0000000000000617.
11. Jensen JK, Ueland T, Aukrust P et al. Highly sensitive troponin T in patients with acute ischemic stroke. Eur Neurol 2012; 68 (5): 287–293. doi: 10.1159/000341340.
12. Zhang Y, Ouyang M, Qiu J et al. Prognostic value of serum cardiac troponin in acute ischemic stroke: an updated systematic review and meta-analysis. J Stroke Cerebrovasc Dis 2022; 31 (6): 106444. doi: 10.1016/j.jstrokecerebrovasdis.2022.106444.
13. Powers WJ, Rabinstein AA, Ackerson T et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019; 50 (12): e344–e418. doi: 10.1161/STR.0000000000000211.
14. Liao J, O’Donnell MJ, Silver FL et al. In-hospital myocardial infarction following acute ischaemic stroke: an observational study. Eur J Neurol 2009; 16 (9): 1035–1040. doi: 10.1111/j.1468-1331.2009.02647.x.
15. Mochmann HC, Scheitz JF, Petzold GC et al. Coronary angiographic findings in acute ischemic stroke patients with elevated cardiac troponin: the troponin elevation in acute ischemic stroke (TRELAS) study. Circulation 2016; 133 (13): 1264–1271. doi: 10.1161/CIRCULATIONAHA.115.018547.
16. Litmeier S, Meinel TR, von Rennenberg R et al. Coronary angiography in acute ischemic stroke patients: frequency and determinants of pathological findings in a multicenter cohort study. J Neurol 2022; 269 (7): 3745–3751. doi: 10.1007/s00415-022-11001-5.
17. Siedler G, Sommer K, Macha K et al. Heart failure in ischemic stroke: relevance for acute care and outcome. Stroke 2019; 50 (11): 3051–3056. doi: 10.1161/STROKE AHA.119.026139.
18. Thomalla G, Upneja M, Camen S et al. Treatment-relevant findings in transesophageal echocardiography after stroke: a prospective multicenter cohort study. Stroke 2022; 53 (1): 177–184. doi: 10.1161/STROKEAHA.121.03 4868.
19. Wrigley P, Khoury J, Eckerle B et al. Prevalence of positive troponin and echocardiogram findings and association with mortality in acute ischemic stroke. Stroke 2017; 48 (5): 1226–1232. doi: 10.1161/STROKEAHA.116.014561.
20. Málek F, Veselý J, Pudil R et al. Souhrn Doporučených postupů Evropské kardiologické společnosti pro diagnostiku a léčbu srdečního selhání z roku 2021. Cor Vasa 2022; 64 (2): 121–162. doi: 10.33678/cor.2022.006.
21. Ghadri JR, Wittstein IS, Prasad A et al. International expert consensus document on Takotsubo syndrome (part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J 2018; 39 (22): 2032–2046. doi: 10.1093/eurheartj/ehy076.
22. Ghadri JR, Kato K, Cammann VL et al. Long-term prognosis of patients with Takotsubo syndrome. J Am Coll Cardiol 2018; 72 (8): 874–882. doi: 10.1016/j.jacc.2018.06.016.
23. Hiestand T, Hänggi J, Klein C et al. Takotsubo syndrome associated with structural brain alterations of the limbic system. J Am Coll Cardiol 2018; 71 (7): 809–811. doi: 10.1016/j.jacc.2017.12.022.
24. Ghadri JR, Wittstein IS, Prasad A et al. International expert consensus document on Takotsubo syndrome (part II): diagnostic workup, outcome, and management. Eur Heart J 2018; 39 (22): 2047–2062. doi: 10.1093/eurheartj/ehy077.
25. Ritter MA, Rohde A, Heuschmann PU et al. Heart rate monitoring on the stroke unit. What does heart beat tell about prognosis? An observational study. BMC Neurol 2011; 11: 47. doi: 10.1186/1471-2377-11-47.
26. Kallmünzer B, Breuer L, Kahl N et al. Serious cardiac arrhythmias after stroke: incidence, time course, and predictors – a systematic, prospective analysis. Stroke 2012; 43 (11): 2892–2897. doi: 10.1161/STROKEAHA.112.664318.
27. Fernández-Menéndez S, García-Santiago R, Vega- -Primo A et al. Cardiac arrhythmias in stroke unit patients. Evaluation of the cardiac monitoring data. Neurologia 2016; 31 (5): 289–295. doi: 10.1016/j.nrl.2015.03.013.
28. Dahlin AA, Parsons CC, Barengo NC et al. Association of ventricular arrhythmia and in-hospital mortality in stroke patients in Florida: a nonconcurrent prospective study. Medicine 2017; 96 (28): e7403. doi: 10.1097/ MD.0000000000007403.
29. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 1991; 22 (8): 983–988. doi: 10.1161/01.str.22.8.983.
30. Ntaios G, Papavasileiou V, Diener HC et al. Non-vitamin-K-antagonist oral anticoagulants in patients with atrial fibrillation and previous stroke or transient ischemic attack: a systematic review and meta-analysis of randomized controlled trials. Stroke 2012; 43 (12): 3298–3304. doi: 10.1161/STROKEAHA.112.673558.
31. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. EAFT (European Atrial Fibrillation Trial) Study Group. Lancet 1993; 342 (8882): 1255–1262.
32. Sposato LA, Cipriano LE, Saposnik G et al. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. Lancet Neurol 2015; 14 (4): 377–387. doi: 10.1016/S1474-4422 (15) 70 027-X.
33. Sposato LA, Chaturvedi S, Hsieh CY et al. Atrial fibrillation detected after stroke and transient ischemic attack: a novel clinical concept challenging current views. Stroke 2022; 53 (3): e94–e103. doi: 10.1161/ STROKEAHA.121.034777.
34. Sposato LA, Riccio PM, Hachinski V. Poststroke atrial fibrillation: cause or consequence? Critical review of current views. Neurology 2014; 82 (13): 1180–1186. doi: 10.1212/WNL.0000000000000265.
35. Scheitz JF, Erdur H, Haeusler KG et al. Insular cortex lesions, cardiac troponin, and detection of previously unknown atrial fibrillation in acute ischemic stroke: insights from the troponin elevation in acute ischemic stroke study. Stroke 2015; 46 (5): 1196–1201. doi: 10.1161/STROKEAHA.115.008681.
36. Fiala M, Haman L, Cihak R. Doporučení ESC pro diagnostiku a léčbu fibrilace síní, 2020. Souhrn dokumentu připravený Českou kardiologickou společností. [online]. Dostupné z: https: //www.med.muni.cz/en/science-and-research/publikacni-cinnost/1772597.
37. Hayashi M, Shimizu W, Albert CM. The spectrum of epidemiology underlying sudden cardiac death. Circ Res 2015; 116 (12): 1887–1906. doi: 10.1161/CIRCRESAHA.116.304521.
38. Rabinstein AA. Sudden cardiac death. Handb Clin Neurol 2014; 119: 19–24. doi: 10.1016/B978-0-7020-4086- 3.00002-3.
39. Khechinashvili G, Asplund K. Electrocardiographic changes in patients with acute stroke: a systematic review. Cerebrovasc Dis 2002; 14 (2): 67–76. doi: 10.1159/000 064733.
40. Fure B, Bruun Wyller T, Thommessen B. Electrocardiographic and troponin T changes in acute ischaemic stroke. J Intern Med 2006; 259 (6): 592–597. doi: 10.1111/j.1365-2796.2006.01639.x.
41. Hromádka M, Seidlerová J, Rohan V et al. Prolonged corrected QT interval as a predictor of clinical outcome in acute ischemic stroke. J Stroke Cerebrovasc Dis 2016; 25 (12): 2911–2917. doi: 10.1016/j.jstrokecerebrovasdis.2016.08.005.
42. Ahn SH, Lee JS, Kim YH et al. Prognostic significance of prolonged corrected QT interval in acute ischemic stroke. Front Neurol 2021; 12: 759822. doi: 10.3389/fneur.2021.759822.
43. Daniele O, Caravaglios G, Fierro B et al. Stroke and cardiac arrhythmias. J Stroke Cerebrovasc Dis 2002; 11 (1): 28–33. doi: 10.1053/jscd.2002.123972.
44. Tahsili-Fahadan P, Geocadin RG. Heart-brain axis: effects of neurologic injury on cardiovascular function. Circ Res 2017; 120 (3): 559–572. doi: 10.1161/CIRCRESAHA.116.308446.
45. Krause T, Werner K, Fiebach JB et al. Stroke in right dorsal anterior insular cortex is related to myocardial injury. Ann Neurol 2017; 81 (4): 502–511. doi: 10.1002/ana. 24906.
46. Seifert F, Kallmünzer B, Gutjahr I et al. Neuroanatomical correlates of severe cardiac arrhythmias in acute ischemic stroke. J Neurol 2015; 262 (5): 1182–1190. doi: 10.1007/s00415-015-7684-9.
47. Min J, Farooq MU, Greenberg E et al. Cardiac dysfunction after left permanent cerebral focal ischemia: the brain and heart connection. Stroke 2009; 40 (7): 2560–2563. doi: 10.1161/STROKEAHA.108.536086.
48. Vornholz L, Nienhaus F, Gliem M et al. Acute heart failure after reperfused ischemic stroke: association with systemic and cardiac inflammatory responses. Front Physiol 2021; 12: 782760. doi: 10.3389/fphys.2021.782760.
49. Yan T, Chen Z, Chopp M et al. Inflammatory responses mediate brain-heart interaction after ischemic stroke in adult mice. J Cereb Blood Flow Metab 2020; 40 (6): 1213–1229. doi: 10.1177/0271678X18813317.
50. Thiel A, Heiss WD. Imaging of microglia activation in stroke. Stroke 2011; 42 (2): 507–512. doi: 10.1161/STROKEAHA.110.598821.
51. Anrather J, Iadecola C. Inflammation and stroke: an overview. Neurotherapeutics 2016; 13 (4): 661–670. doi: 10.1007/s13311-016-0483-x.
52. Chen Z, Venkat P, Seyfried D et al. Brain-heart interaction: cardiac complications after stroke. Circ Res 2017; 121 (4): 451–468. doi: 10.1161/CIRCRESAHA.117.311170.
53. Wittstein IS, Thiemann DR, Lima JAC et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 2005; 352 (6): 539–548. doi: 10.1056/NEJMoa043046.
54. Schömig A. Catecholamines in myocardial ischemia. Systemic and cardiac release. Circulation 1990; 82 (Suppl 3): II13–II22.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2024 Issue 2
Most read in this issue
- Factors influencing the outcome in patients with cauda equina syndrome
- Course of myelin oligodendrocyte glycoprotein-associated disease (MOGAD) – a cohort of patients
- Neurosurgical interventions during pregnancy
- Eff ect of bimanual sensor glove and unimanual robot-assisted therapy for upper limb function after stroke