#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dominant (Kjer’s) optic atrophy as­sociated with mutations in OPA1 gene


Authors: S. Kelifová 1;  T. Honzík 1;  M. Tesařová 1;  B. Kousal 2;  P. Lišková 1,2;  P. Havránková 3;  H. Kolářová 1
Authors‘ workplace: Klinika dětského a dorostového lékařství 1. LF UK a VFN v Praze 1;  Oční klinika 1. LF UK a VFN v Praze 2;  Neurologická klinika 1. LF UK a VFN v Praze 3
Published in: Cesk Slov Neurol N 2020; 83(1): 33-42
Category: Review Article
doi: https://doi.org/10.14735/amcsnn202033

Overview

Dominant optic atrophy (DOA) is an autosomal dominant disorder manifest­­ing by slowly progres­sive painless bilateral visual acuity loss with variable degree of severity. DOA is caused by mutations in nuclear DNA encod­­ing proteins as­sociated with the in­ner mitochondrial membrane. Most individuals with DOA harbour a dis­ease-caus­­ing mutation in the OPA1 gene; however, other genes and loci as­sociated with DOA have also been identified. First symp­toms usual­ly manifest in the first two decades of life. The dis­ease mechanism lies in neurodegenerative damage of retinal ganglion cel­ls lead­­ing to optic nerve atrophy. Decrease of visual acuity is as­sociated with colour vision alterations and central or paracentral visual field defects. On fundoscopic examination, optic head nerve pal­lor can be noticed, occasional­ly with excavation. Extraocular symp­toms are present in some patients, caus­­ing so-cal­led DOA plus syndrome. Bilateral sensorineural hear­­ing los­s, is the most common one; chronic progres­sive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like disorder, and spastic paraplegia of lower limbs are rare. Cur­rently, there is no ef­fective treatment available that would prevent the development of visual impairment. Genetic dia­gnostics and fol­low-up of patients with DOA are held in the Centre for Patients with Mitochondrial Optic Neuropathies, General University Hospital in Prague. The aim of this review is to increase awareness of the most com­mon genetical­ly determined optic neuropathy.

Keywords:

dominant optic atrophy – Leber‘s hereditary optic neuropathy – optic neuropathy/atrophy – Mitochondrial diseases


Sources

1. Lenaers G, Hamel C, Delettre C et al. Dominant optic atrophy. Orphanet J Rare Dis 2012; 7: 46. doi: 10.1186/ 1750-1172-7-46.

2. Batten B. A family suf­fer­­ing from hereditary optic atrophy. Trans Ophthalmol Soc UK 1896; 16: 125.

3. Snell S. Dis­eases of the optic nerve. I. Hereditary or congenital optic atrophy and al­lied cases. Trans Ophthal Soc UK 1897; 17: 66– 81.

4. Kjer P. Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. Acta Ophthalmol Suppl 1959; 164 (Suppl 54): 1– 147.

5. Smith DP. Dia­gnostic criteria in dominantly inherited juvenile optic atrophy. A a report of three new families. Am J Optom Arch Am Acad Optom 1972; 49(3): 183– 200. doi: 10.1097/ 00006324-197203000-00001.

6. Amati-Bon­neau P, Valentino ML, Reynier P et al. OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain 2008; 131(Pt 2): 338– 351. doi: 10.1093/ brain/ awm298.

7. Eiberg H, Kjer B, Kjer P et al. Dominant optic atrophy (OPA1) mapped to chromosome 3q region. I. Linkage analysis. Hum Mol Genet 1994; 3(6): 977– 980. doi: 10.1093/ hmg/ 3.6.977.

8. Alexander C, Votruba M, Pesch UE et al. OPA1, encod­­ing a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000; 26(2): 211– 215. doi: 10.1038/ 79944.

9. Delettre C, Grif­foin JM, Kaplan J et al. Mutation spectrum and splic­­ing variants in the OPA1 gene. Hum Genet 2001; 109(6): 584– 591. doi: 10.1007/ s00439-001-0633-y.

10. Kjer B, Eiberg H, Kjer P et al. Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects. Acta Ophthalmol Scand 1996; 74(1): 3– 7. doi: 10.1111/ j.1600-0420.1996.tb00672.x.

11. Yu-Wai-Man P, Chin­nery PF. Dominant optic atrophy: novel OPA1 mutations and revised prevalence estimates. Ophthalmology 2013; 120(8): 1712. doi: 10.1016/ j.ophtha.2013.04.022.

12. Yu-Wai-Man P, Grif­fiths PG, Brown DT et al. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet 2003; 72(2): 333– 339. doi: 10.1086/ 346066.

13. Thiselton DL, Alexander C, Mor­ris A et al. A frameshift mutation in exon 28 of the OPA1 gene explains the high prevalence of dominant optic atrophy in the Danish population: evidence for a founder ef­fect. Hum Genet 2001; 109(5): 498– 502. doi: 10.1007/ s004390100600.

14. Toomes C, Marchbank NJ, Mackey DA et al. Spectrum, frequency and penetrance of OPA1 mutations in dominant optic atrophy. Hum Mol Genet 2001; 10(13): 1369– 1378. doi: 10.1093/ hmg/ 10.13.1369.

15. Cohn AC, Toomes C, Potter C et al. Autosomal dominant optic atrophy: penetrance and expres­sivity in patients with OPA1 mutations. Am J Ophthalmol 2007; 143(4): 656– 662. doi: 10.1016/ j.ajo.2006.12.038.

16. Yu-Wai-Man P, Grif­fiths PG, Burke A et al. The prevalence and natural history of dominant optic atrophy due to OPA1 mutations. Ophthalmology 2010; 117(8): 1538– 1546. doi: 10.1016/ j.ophtha.2009.12.038.

17. Hoyt CS. Autosomal dominant optic atrophy. A spectrum of disability. Ophthalmology 1980; 87(3): 245– 251. doi: 10.1016/ s0161-6420(80)35247-0.

18. Votruba M, Fitzke FW, Holder GE et al. Clinical features in af­fected individuals from 21 pedigrees with dominant optic atrophy. Arch Ophthalmol 1998; 116(3): 351– 358. doi: 10.1001/ archopht.116.3.351.

19. Johnston RL, Sel­ler MJ, Behnam JT et al. Dominant optic atrophy. Refin­­ing the clinical dia­gnostic criteria in light of genetic linkage studies. Ophthalmology 1999; 106(1): 123– 128. doi: 10.1016/ S0161-6420(99)90013-1.

20. Almind GJ, Ek J, Rosenberg T et al. Dominant optic atrophy in Denmark –  report of 15 novel mutations in OPA1, us­­ing a strategy with a detection rate of 90%. BMC Med Genet 2012; 13: 65. doi: 10.1186/ 1471-2350-13-65.

21. Nochez Y, Arsene S, Gueguen N et al. Acute and late-onset optic atrophy due to a novel OPA1 mutation lead­­ing to a mitochondrial coupl­­ing defect. Mol Vis 2009; 15: 598– 608.

22. Pretegiani E, Rosini F, Rufa A et al. Genotype-phenotype and OCT cor­relations in autosomal dominant optic atrophy related to OPA1 gene mutations: report of 13 Italian families. J Neurol Sci 2017; 382: 29– 35. doi: 10.1016/ j.jns.2017.09.018.

23. Puomila A, Huoponen K, Mantyjarvi M et al. Dominant optic atrophy: cor­relation between clinical and molecular genetic studies. Acta Ophthalmol Scand 2005; 83(3): 337– 346. doi: 10.1111/ j.1600-0420.2005.00448.x.

24. Votruba M, Thiselton D, Bhattacharya SS. Optic disc morphology of patients with OPA1 autosomal dominant optic atrophy. Br J Ophthalmol 2003; 87(1): 48– 53. doi: 10.1136/ bjo.87.1.48.

25. Barboni P, Savini G, Cascavil­la ML et al. Early macular retinal ganglion cell loss in dominant optic atrophy: genotype-phenotype cor­relation. Am J Ophthalmol 2014; 158(3): 628. doi: 10.1016/ j.ajo.2014.05.034.

26. Park SW, Hwang JM. Optical coherence tomography shows early loss of the inferior temporal quadrant retinal nerve fiber layer in autosomal dominant optic atrophy. Graefes Arch Clin Exp Ophthalmol 2015; 253(1): 135– 141. doi: 10.1007/ s00417-014-2852-7.

27. Paul KN, Saafir TB, Tosini G. The role of retinal photoreceptors in the regulation of circadian rhythms. Rev Endocr Metab Disord. 2009; 10(4): 271– 278. doi: 10.1007/ s11154-009-9120-x.

28. Gonzalez-Menendez I, Reinhard K, Tolivia J et al. Influence of opa1 mutation on survival and function of retinal ganglion cel­ls. Invest Ophthalmol Vis Sci 2015; 56(8): 4835– 4845. doi: 10.1167/ iovs.15-16743.

29. La Morgia C, Ros­s-Cisneros FN, Sadun AA et al. Melanopsin retinal ganglion cel­ls are resistant to neurodegeneration in mitochondrial optic neuropathies. Brain 2010; 133(8): 2426– 2438. doi: 10.1093/ brain/ awq155.

30. Holder GE, Votruba M, Carter AC et al. Electrophysiological findings in dominant optic atrophy (DOA) link­­ing to the OPA1 locus on chromosome 3q 28-qter. Doc Ophthalmol 1998; 95(3– 4): 217– 228.

31. Liskova P, Tesarova M, Dudakova L et al. OPA1 analysis in an international series of probands with bilateral optic atrophy. Acta Ophthalmol 2017; 95(4): 363– 369. doi: 10.1111/ aos.13285.

32. Yu-Wai-Man P, Grif­fiths PG, Gorman GS et al. Multi-system neurological dis­ease is com­mon in patients with OPA1 mutations. Brain 2010; 133(3): 771– 786. doi: 10.1093/ brain/ awq007.

33. Amati-Bon­neau P, Guichet A, Olichon A et al. OPA1 R445H mutation in optic atrophy as­sociated with sensorineural deafnes­s. Ann Neurol 2005; 58(6): 958– 963. doi: 10.1002/ ana.20681.

34. Huang T, Santarel­li R, Starr A. Mutation of OPA1 gene causes deafness by af­fect­­ing function of auditory nerve terminals. Brain Res 2009; 1300: 97– 104. doi: 10.1016/ j.brainres.2009.08.083.

35. Leruez S, Milea D, Defoort-Dhel­lem­mes S et al. Sensorineural hear­­ing loss in OPA1-linked disorders. Brain 2013; 136(7): 236. doi: 10.1093/ brain/ aws340.

36. Pretegiani E, Rufa A, Gal­lus GN et al. Spastic para­plegia in “dominant optic atrophy plus” phenotype due to OPA1 mutation. Brain 2011; 134(11): 195. doi: 10.1093/ brain/ awr101.

37. Verny C, Loiseau D, Scherer C et al. Multiple sclerosis--like disorder in OPA1-related autosomal dominant optic atrophy. Neurology 2008; 70(13 Pt 2): 1152– 1153. doi: 10.1212/ 01.wnl.0000289194.89359.a1.

38. Roubertie A, Leboucq N, Picot MC et al. Neuroradiological findings expand the phenotype of OPA1-related mitochondrial dysfunction. J Neurol Sci 2015; 349(1– 2): 154– 160. doi: 10.1016/ j.jns.2015.01.008.

39. Sergouniotis PI, Perveen R, Thiselton DL et al.Clinical and molecular genetic findings in autosomal dominant OPA3-related optic neuropathy. Neurogenetics 2015; 16(1): 69– 75. doi: 10.1007/ s10048-014-0416-y.

40. Reynier P, Amati-Bon­neau P, Verny C et al. OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract. J Med Genet 2004; 41(9): 110. doi: 10.1136/ jmg.2003.016576.

41. Behr C. Die komplizierte, hereditar-familiare Optikusatrophie des Kindesalters– ein bisher nicht beschriebener Symp­tomkomplex. Klin Mbl Augenheilkd 1909; 47: 138– 160.

42. Klef­fner I, Wes­sl­­ing C, Gess B et al. Behr syndrome with homozygous C19ORF12 mutation. J Neurol Sci 2015; 357(1– 2): 115– 158. doi: 10.1016/ j.jns.2015.07.009.

43. Rubegni A, Pisano T, Bacci G et al. Leigh-like neuroimag­­ing features as­sociated with new bial­lelic mutations in OPA1. Eur J Paediatr Neurol 2017; 21(4): 671– 677. doi: 10.1016/ j.ejpn.2017.04.004.

44. Anikster Y, Kleta R, Shaag A et al. Type III 3-methylglutaconic aciduria (optic atrophy plus syndrome, or Costeff optic atrophy syndrome): identification of the OPA3 gene and its founder mutation in Iraqi Jews. Am J Hum Genet 2001; 69(6): 1218– 1224. doi: 10.1086/ 324651.

45. Yu-Wai-Man P, Chin­nery PF. Reply: Early-onset Behr syndrome due to compound heterozygous mutations in OPA1. Brain 2014; 137(10): 302. doi: 10.1093/ brain/ awu187.

46. Lee J, Jung SC, Hong YB et al. Reces­sive optic atrophy, sensorimotor neuropathy and cataract as­sociated with novel compound heterozygous mutations in OPA1. Mol Med Rep 2016; 14(1): 33– 40. doi: 10.3892/ m­mr.2016.5209.

47. Bon­neau D, Colin E, Oca F et al. Early-onset Behr syndrome due to compound heterozygous mutations in OPA1. Brain 2014; 137(10): 301. doi: 10.1093/ brain/ awu184.

48. Pyle A, Ramesh V, Bartsakoulia M et al. Behr’s syndrome is typical­ly as­sociated with disturbed mitochondrial translation and mutations in the C12orf65 gene. J Neuromuscul Dis 2014; 1(1): 55– 63. doi: 10.3233/ JND-140003.

49. Bar­rett TG, Bundey SE, Fielder AR et al. Optic atrophy in Wolfram (DIDMOAD) syndrome. Eye (Lond) 1997; 11(6): 882– 888. doi: 10.1038/ eye.1997.226.

50. Eiberg H, Hansen L, Kjer B et al. Autosomal dominant optic atrophy as­sociated with hear­­ing impairment and impaired glucose regulation caused by a mis­sense mutation in the WFS1 gene. J Med Genet 2006; 43(5): 435– 440. doi: 10.1136/ jmg.2005.034892.

51. Soares A, Mota A, Fonseca S et al. Ophthalmologic manifestations of Wolfram syndrome: report of 14 cases. Ophthalmologica 2019; 241(2): 116– 119. doi: 10.1159/ 000490535.

52. Voo I, Al­lf BE, Udar N et al. Hereditary motor and sensory neuropathy type VI with optic atrophy. Am J Ophthalmol 2003; 136(4): 670– 677. doi: 10.1016/ s0002-9394(03)00390-8.

53. Tranebjaerg L, Schwartz C, Eriksen H et al. A new X linked reces­sive deafness syndrome with blindnes­s, dystonia, fractures, and mental deficiency is linked to Xq22. J Med Genet 1995; 32(4): 257– 263. doi: 10.1136/ jmg.32.4.257.

54. Mohr J, Mageroy K. Sex-linked deafness of a pos­sibly new type. Acta Genet Stat Med 1960; 10: 54– 62. doi: 10.1159/ 000151118.

55. Leigh D. Subacute necrotiz­­ing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry 1951; 14(3): 216– 221. doi: 10.1136/ jn­np.14.3.216.

56. DiMauro S, Hirano M. MERRF. In: Adam MP, Ardinger HH, Pagon RA et al (eds.). GeneReviews®. Seattle (WA): University of Washington 1993– 2017. [online]. Available from URL: https: / / www.ncbi.nlm.nih.gov/ books/ NBK1119.

57. Fortuna F, Barboni P, Liguori R et al. Visual system involvement in patients with Friedreich’s ataxia. Brain 2009; 132(1): 116– 123. doi: 10.1093/ brain/ awn269.

58. Finsterer J, Mancuso M, Pareyson D et al. Mitochondrial disorders of the retinal ganglion cel­ls and the optic nerve. Mitochondrion 2018; 42: 1– 10. doi: 10.1016/ j.mito.2017.10.003.

59. Otradovec J. Toxické a nutriční neuropatie optiku. In: Otradovec J (ed). Klinická neurooftalmologie 1. Praha: Grada 2003: 191– 192.

60. Fer­re M, Caignard A, Milea D et al. Improved locus--specific database for OPA1 mutations al­lows inclusion of advanced clinical data. Hum Mutat 2015; 36(1): 20– 25. doi: 10.1002/ humu.22703.

61. Del Dotto V, Fogazza M, Carel­li V et al. Eight human OPA1 isoforms, long and short: What are they for? Biochim Biophys Acta Bioenerg 2018; 1859(4): 263– 269. doi: 10.1016/ j.bbabio­.2018.01.005.

62. Olichon A, Baricault L, Gas N et al. Loss of OPA1 perturbates the mitochondrial in­ner membrane structure and integrity, lead­­ing to cytochrome c release and apo­ptosis. J Biol Chem 2003; 278(10): 7743– 7746. doi: 10.1074/ jbc.C200677200.

63. Guil­lery O, Malka F, Landes T et al. Metal­loprotease-mediated OPA1 proces­s­­ing is modulated by the mitochondrial membrane potential. Biol Cell 2008; 100(5): 315– 325. doi: 10.1042/ bc20070110.

64. Lee JE, Westrate LM, Wu H et al. Multiple dynamin family members col­laborate to drive mitochondrial division. Nature 2016; 540(7631): 139– 143. doi: 10.1038/ nature20555.

65. Frezza C, Cipolat S, Martins de Brito O et al. OPA1 controls apoptotic cristae remodel­­ing independently from mitochondrial fusion. Cell 2006; 126(1): 177– 189. doi: 10.1016/ j.cel­l.2006.06.025.

66. Elachouri G, Vidoni S, Zan­na C et al. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res 2011; 21(1): 12– 20. doi: 10.1101/ gr.108696.110.

67. Del Dotto V, Fogazza M, Lenaers G et al. OPA1: How much do we know to approach ther­apy? Pharmacol Res 2018; 131: 199– 210. doi: 10.1016/ j.phrs.2018.02.018.

68. Belenguer P, Pel­legrini L. The dynamin GTPase OPA1: more than mitochondria? Biochim Biophys Acta 2013; 1833(1): 176– 183. doi: 10.1016/ j.bbamcr.2012.08.004.

69. Del Dotto V, Mishra P, Vidoni S et al. OPA1 Isoforms in the hierarchical organization of mitochondrial functions. Cell Rep 2017; 19(12): 2557– 2571. doi: 10.1016/ j.celrep.2017.05.073.

70. Olichon A, Landes T, Arnaune-Pel­loquin L et al. Ef­fects of OPA1 mutations on mitochondrial morphology and apoptosis: relevance to ADOA pathogenesis. J Cell Physiol 2007; 211(2): 423– 430. doi: 10.1002/ jcp.20950.

71. Zan­na C, Ghel­li A, Porcel­li AM et al. OPA1 mutations as­sociated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain 2008; 131(2): 352– 367. doi: 10.1093/ brain/ awm335.

72. Agier V, Oliviero P, Laine J et al. Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations. Biochim Biophys Acta 2012; 1822(10): 1570– 1580. doi: 10.1016/ j.bbadis.2012.07.002.

73. Hudson G, Amati-Bon­neau P, Blakely EL et al. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 2008; 131(2): 329– 337. doi: 10.1093/ brain/ awm272.

74. Spiegel R, Saada A, Flan­nery PJ et al. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy as­sociated with a homozygous OPA1 mutation. J Med Genet 2016; 53(2): 127– 131. doi: 10.1136/ jmedgenet-2015-103361.

75. Caporali L, Maresca A, Capristo M et al. Incomplete penetrance in mitochondrial optic neuropathies. Mitochondrion 2017; 36: 130– 137. doi: 10.1016/ j.mito.2017.07.004.

76. Kjer P, Jensen OA, Klinken L. Histopathology of eye, optic nerve and brain in a case of dominant optic atrophy. Acta Ophthalmol (Copenh) 1983; 61(2): 300– 312. doi: 10.1111/ j.1755-3768.1983.tb01424.x.

77. Sadun AA, Win PH, Ros­s-Cisneros FN et al. Leber’s hereditary optic neuropathy dif­ferential­ly af­fects smal­ler axons in the optic nerve. Trans Am Ophthalmol Soc 2000; 98: 223– 232, discus­sion 32– 35.

78. Pan BX, Ros­s-Cisneros FN, Carel­li V et al. Mathematical­ly model­­ing the involvement of axons in Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 2012; 53(12): 7608– 7617. doi: 10.1167/ iovs.12-10452.

79. Levin LA. Superoxide generation explains com­mon features of optic neuropathies as­sociated with cecocentral scotomas. J Neuroophthalmol 2015; 35(2): 152– 160. doi: 10.1097/ WNO.0000000000000250.

80. Yu-Wai-Man P. Therapeutic approaches to inherited optic neuropathies. Semin Neurol 2015; 35(5): 578– 586. doi: 10.1055/ s-0035-1563574.

81. Grau T, Burbul­la LF, Engl G et al. A novel heterozygous OPA3 mutation located in the mitochondrial target sequence results in altered steady-state levels and fragmented mitochondrial network. J Med Genet 2013; 50(12): 848– 858. doi: 10.1136/ jmedgenet-2013-101774.

82. Ryu SW, Jeong HJ, Choi M et al. Optic atrophy 3 as a protein of the mitochondrial outer membrane induces mitochondrial fragmentation. Cell Mol Life Sci 2010; 67(16): 2839– 2850. doi: 10.1007/ s00018-010-0365-z.

83. Rouzier C, Ban­nwarth S, Chaus­senot A et al. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy “plus” phenotype. Brain 2012; 135(1): 23– 34. doi: 10.1093/ brain/ awr323.

84. Sadun AA, Chicani CF, Ros­s-Cisneros FN et al. Ef­fect of EPI-743 on the clinical course of the mitochondrial dis­ease Leber hereditary optic neuropathy. Arch Neurol 2012; 69(3): 331– 338. doi: 10.1001/ archneurol.2011.2972.

85. Carel­li V, La Morgia C, Valentino ML et al. Idebenone treatment in Leber’s hereditary optic neuropathy. Brain 2011; 134(9): 188. doi: 10.1093/ brain/ awr180.

86. Barboni P, Valentino ML, La Morgia C et al. Idebenone treatment in patients with OPA1-mutant dominant optic atrophy. Brain 2013; 136(2): 231. doi: 10.1093/ brain/ aws280.

87. Smith TG, Seto S, Gan­ne P et al. A randomized, placebo-control­led trial of the benzoquinone idebenone in a mouse model of OPA1-related dominant optic atrophy reveals a limited therapeutic ef­fect on retinal ganglion cell dendropathy and visual function. Neuroscience 2016; 319: 92– 106. doi: 10.1016/ j.neuroscience.2016.01.042.

88. Quiros PM, Ramsay AJ, Sala D et al. Loss of mitochondrial protease OMA1 alters proces­s­­ing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J 2012; 31(9): 2117– 2133. doi: 10.1038/ emboj.2012.70.

89. Naso MF, Tomkowicz B, Per­ry WL et al. Adeno-as­sociated virus (AAV) as a vector for gene ther­apy. Bio-Drugs 2017; 31(4): 317– 334. doi: 10.1007/ s40259-017-0234-5.

90. Wan X, Pei H, Zhao MJ et al. Ef­ficacy and safety of rAAV2-ND4 treatment for leber’s hereditary optic neuropathy. Sci Rep 2016; 6: 21587. doi: 10.1038/ srep21587.

91. Guy J, Feuer WJ, Davis JL et al. Gene ther­apy for leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology 2017; 124(11): 1621– 1634. doi: 10.1016/ j.ophtha.2017.05.016.

92. Civiletto G, Varanita T, Cerutti R et al. Opa1 overexpres­sion ameliorates the phenotype of two mitochondrial dis­ease mouse models. Cell Metab 2015; 21(6): 845– 854. doi: 10.1016/ j.cmet.2015.04.016.

93. Sarzi E, Seveno M, Piro-Megy C et al. OPA1 gene ther­apy prevents retinal ganglion cell loss in a dominant optic atrophy mouse model. Sci Rep 2018; 8(1): 2468. doi: 10.1038/ s41598-018-20838-8.

94. Hlavatá L, Ďuďáková Ľ, Trková M et al. Preimplantační genetická dia­gnostika a dědičná onemocnění oka. Cesk Slov Oftalmol 2016; 72(5): 167– 171.

95. Liskova P, Ulmanova O, Tesina P et al. Novel OPA1 mis­sense mutation in a family with optic atrophy and severe widespread neurological disorder. Acta Ophthalmol 2013; 91(3): 225– 231. doi: 10.1111/ aos.12038.

96. Davey KM, Parboosingh JS, McLeod DR et al. Mutation of DNAJC19, a human homologue of yeast in­ner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal reces­sive Barth syndrome-like condition. J Med Genet 2006; 43(5): 385– 393. doi: 10.1136/ jmg.2005.036657.

97. El-Shanti H, Lidral AC, Jar­rah N et al. Homozygosity mapp­­ing identifies an additional locus for Wolfram syndrome on chromosome 4q. Am J Hum Genet 2000; 66(4): 1229– 1236. doi: 10.1086/ 302858.

98. Abrams AJ, Hufnagel RB, Rebelo A et al. Mutations in SLC25A46, encod­­ing a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat Genet 2015; 47(8): 926– 932. doi: 10.1038/ ng.3354.

99. Angebault C, Guichet PO, Talmat-Amar Y et al. Reces­sive mutations in RTN4IP1 cause isolated and syndromic optic neuropathies. Am J Hum Genet 2015; 97(5): 754– 760. doi: 10.1016/ j.ajhg.2015.09.012.

100. Hard­­ing AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early dia­gnostic criteria and intrafamilial cluster­­ing of clinical features. Brain 1981; 104(3): 589– 620. doi: 10.1093/ brain/ 104.3.589.

101. Hanein S, Per­rault I, Roche O et al. TMEM126A, encod­­ing a mitochondrial protein, is mutated in autosomal-reces­sive nonsyndromic optic atrophy. Am J Hum Genet 2009; 84(4): 493– 498. doi: 10.1016/ j.ajhg.2009.03.003.

102. Shimazaki H, Takiyama Y, Ishiura H et al. A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). J Med Genet 2012; 49(12): 777– 784. doi: 10.1136/ jmedgenet-2012-101212.

103. De Michele G, De Fusco M, Cavalcanti F et al. A new locus for autosomal reces­sive hereditary spastic paraplegia maps to chromosome 16q24.3. Am J Hum Genet 1998; 63(1): 135– 139. doi: 10.1086/ 301930.

104. Spiegel R, Pines O, Ta-Shma A et al. Infantile cerebel­lar-retinal degeneration as­sociated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet 2012; 90(3): 518– 523. doi: 10.1016/ j.ajhg.2012.01.009.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 1

2020 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#