The Effect of Virtual Reality Environment during Robotic‑Assisted Locomotor Training on Gross Motor Functions in Patients with Cerebral Palsy
Authors:
S. Klobucká 1; E. Žiaková 1,2; R. Klobucký 3
Authors‘ workplace:
Rehabilitačné centrum Harmony, Bratislava
1; Slovenská zdravotnícka univerzitav Bratislave, FO a ZOŠ
2; Sociologický ústav, Slovenská akadémia vied, Bratislava
3
Published in:
Cesk Slov Neurol N 2013; 76/109(6): 702-711
Category:
Original Paper
Overview
Objective:
The aim of study was to examine the effect of virtual reality during Robotic‑Assisted Treadmill Training (RATT) on gross motor functions in children with Cerebral Palsy (CP).
Material and methods:
Fourty-two children (25 boys) with bilateral spastic CP, aged 4.3– 12.9 years underwent 20 sessions of RATT during 4– 6‑week period with frequency of 3- to 5- times a week using driven gait orthosis Lokomat. Patients were randomly allocated into two groups according to whether they trained in a virtual reality environment (VR‑LOKO, n = 26) or not (LOKO, n = 16). Outcome measures were dimensions A (lying, rolling), B (sitting), C (crawling, kneeling), D (standing), E (walking, running, jumping) of the Gross Motor Function Measure (GMFM).
Results:
After completing 20 sessions, patients in both groups demonstrated highly statistically significant improvement (p < 0.001) in all dimensions of the GMFM. Comparing the mean improvement in outcome parameters in both groups (LOKO vs VR‑LOKO), we documented a statistically significant difference (p < 0.05) in the A and C dimensions, and overall improvement in the GMFM in favour of patients in VR‑LOKO group.
Conclusions:
The results of our study indicate that the use of virtual reality during RATT has an effect on the achieved improvement in some motor functions in CP patients. VR‑based training conditions represent a valuable approach to enhancing active participation during RATT in children with CP.
Key words:
treadmill – cerebral palsy – motor function
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Sources
1. Kraus J. Dětská mozková obrna. Neurol Prax 2011; 12(4): 219– 220.
2. Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann‑Reiffer C, Knecht B et al. Robotic‑assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Pediatr Neurol 2010; 14(6): 496– 502.
3. Cazalets JR, Borde M, Clarac F. Localization and Organization of the Central Pattern Generator for Hindlimb Locomotion in Newborn Rat. J Neurosci 1995; 15(7): 4943– 4951.
4. Duysens J, Van de Crommert H. Neural control of locomotion Part 1: The central pattern generator from cats to humans. Gait Posture 1998; 7(2): 131– 141.
5. Mac Kay‑Lyons M. Central pattern generation of locomotion: a review of evidence. Phys Ther 2002; 82(1): 69– 83.
6. Borggraefe I, Meyer‑Heim A. Kumar A, Schaefer JS,Berweck S, Heinen F. Improved Gait Parameters After Robotic‑Assisted Locomotor Treadmill Therapy in a 6- Year‑Old Child with Cerebral Palsy. Movement Dis 2008; 23(2): 280– 283.
7. Dietz V, Müller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002; 125(12): 2626– 2634.
8. Kříž J, Káfuňková P, Schreier B, Kolář P. Trénink lokomoce v závěsu u pacientů po poranění míchy. Cesk Slov Neurol N 2010; 73/ 106(2): 124– 130.
9. Hornby TG, Zemon DH, Campbell D. Robotic assisted, Body‑Weight‑Supported Treadmill Training in Individuals Following Motor Incomplete Spinal Cord Injury. Phys Ther 2005; 85(1): 52– 66.
10. Husemann B, Müller F, Krewer C, Heller S, Koenig E.Effects of locomotion training with assistance of robot‑driven gait orthosis in hemiparetic patients after stroke. Stroke 2007; 38(2): 349– 354.
11. Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K,Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehab Neural Re 2007; 21(4): 307– 314.
12. Meyer‑Heim A, Ammann‑Reiffer C, Schmartz A, Schäfer J, Sennhauser FH, Heinen F et al. Improvement of walking abilities after robotic‑assisted locomotion training in children with cerebral palsy. Arch Dis Child 2009; 94(8): 615– 620.
13. Westlake KP, Patten C. Pilot study of Lokomat versus manual‑assisted treadmill training for locomotor recovery post‑stroke. J Neuroeng Rehabil 2009; 6: 18.
14. Wirtz M, Zemon DH, Rupp R, Scheel A, Colombo G,Dietz V et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 2005; 86(4): 672– 680.
15. Beer S, Aschbacher B, Manoglou D, Gamper E, Kool J, Kesselring J. Robot‑assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler 2008; 14(2): 231– 236.
16. Ustinova K, Chernikova L, Bilimenko A, Telenkov A,Epstein N. Effect of robotic locomotor training in an individual with Parkinson‘s disease: a case report. Disabil Rehabil Assist Technol 2011; 6(1): 77– 85.
17. Borggraefe I, Kiwull L, Schaefer JS, Koerte I, Blaschek A, Meyer‑Heim A et al. Sustainability of motor performance after robotic‑assisted treadmill therapy in children: an open, non randomized baseline – treatment study. Eur J Phys Rehabil Med 2010; 46(2): 125– 131.
18. Meyer‑Heim A, Borggraefe I, Ammann‑Reiffer C, Berweck S, Sennhauser FH, Colombo G et al. Feasibility of robotic assisted locomotor training in children with central gait impairment. Dev Med Child Neurol 2007; 49(12): 900– 906.
19. Brütsch K, Schuler T, Koenig A, Zimmerli L, Mérillat S, Lünenburger L et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil 2010; 7: 15.
20. Koenig A, Brütsch K, Zimmerli L, Guidali M, Duschau‑Wicke A. Virtual environments increase participation of children with cerebral palsy in robot‑aided treadmill training. Virtual Rehabilitation [on-line]; Available from URL: http:/ / ecollection.ethbib.ethz.ch/ eserv.php?pid=eth:1513&dsID=eth‑1513– 01.pdf.
21. Holden MK. Virtual environments for motor rehabilitation: review. Cyberpsychol Behav 2005; 8(3): 187– 211.
22. Brütsch K, Koenig A, Zimmerli L, Mérillat S, Riener R, Jäncke L et al. Virtual reality for enhancement of robot‑assisted gait training in children with neurological gait disorders. J Rehabil Med 2011; 43(6): 493– 499.
23. Russell DJ, Rosenbaum PL, Cadman DT, Gowland C,Hardy S, Jarvis S. The gross motor function measure: A means to evaluate the effects of physical therapy. Dev Med Child Neurol 1989; 31(3): 341– 352.
24. Russell D, Rosenbaum PL, Avery LM, Lane M.Gross Motor Function Measure (GMFM‑66 & GMFM‑ -88) User’s Manual. Clinics in Developmental Medicine No. 159. London: Mac Keith Press 2002.
25. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997; 39(4): 214– 223
26. Kraus J et. al. Dětská mozková obrna. 1st ed, Praha: Grada Publishing 2005.
27. Cherng RJ, Liu CF, Lau TW, Hong RB. Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. Am J Phys Med Rehabil 2007; 86(7): 548– 555.
28. Knox V, Evans, AL. Evaluation of the functional effects of a course of Bobath therapy in children with cerebral palsy: a preliminary study. Dev Med Child Neurol 2002 ; 44(7): 447– 460.
29. Hanna SE, Bartlett DJ, Rivard LM, Russel DJ. Reference curves for the gross motor function measure: percentiles for clinical description and tracking over time among children with cerebral palsy. Phys Ther 2008; 88(5): 596– 607.
30. Klobucká, S, Kováč, M, Žiaková, E. Improvement of Gait and postural functions after robotic‑assisted treadmill training (RATT) in patients with bilateral spastic cerebral palsy. Proceeding of the XXth World Congress of Neurology, With Africa, for Africa Marrakesh, Maroko, 2011 Nov 12– 17. [Abstract book CD‑ ROM]. 2011.
31. Patritti B, Sicari M, Deming M. Enhancement and retention of locomotor function in children with cerebral palsy after robotic gait training. Gait Posture 2009; 30 (Suppl 2): S9– S10.
32. Sicari M, Patritti B, Deming LC, Romaguera F, Pelliccio M, Benedetti MG et al. Robotic gait training in children with cerebral palsy: A case series. Gait Posture 2009; 30 (Suppl 1): S2.
33. Montinaro A, Piccinini L, Romei M, Bo I, Molteni F,Turconi AC et al. Robotic‑assisted locomotion training in children affected by Cerebral Palsy. Gait Posture 2011; 33 (Suppl 1): S55– S56.
34. Vojta V. Cerebrálne poruchy pohybového ústrojenstva v dojčenskom veku – včasná diagnóza a včasná liečba. 1st ed. Bratislava: MK3 1993.
35. Kolář P et al. Rehabilitace v klinické praxi. Praha: Galén 2009.
36. MacLean N, Pound P. A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc Sci Med 2000; 50(4): 495– 506.
37. Colombo R, Pisano F, Mazzone A, Delconte C, Micera S, Carroza MC et al. Design strategies to improve patient motivation during robot‑aided rehabilitation. J Neuroeng Rehabil 2007; 4: 3.
38. Merians AS, Tunik E, Adamovich SV. Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms. Stud Health Technol Inform 2009; 145: 109– 125.
39. You SH, Jang SH, Kim YH, Hallett M, Ahn SH, Kwon YH et al. Virtual reality‑induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter‑blind randomized study. Stroke 2005; 36(6): 1166– 1171.
40. Mirelman A, Bonato P, Deutsch JE. Effect of training with robot‑virtual reality system compared with robot alone on the gait of individuals after stroke. Stroke 2008; 40(1): 169– 174.
41. Damiano DL. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther 2006; 86(11): 1534– 1540.
42. Papavasiliou AS. Management of motor problems in cerebral palsy: a critical update for the clinician. Eur J Paediatr Neurol 2009; 13(5): 387– 396.
43. Schuler T, Brütsch K, Müller R, Van Hedel H, Meyer‑Heim A. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. NeuroRehabilitation 2011; 28(4): 401– 411.
44. Borggraefe I, Klaiber M, Schuler T, Warken B, Schroeder SA, Heinen F et al. Safety of robotic‑assisted treadmill therapy in children and adolescents with gait impairment: a bi‑centre survey. Dev Neurorehabil 2010; 13(2): 114–119.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2013 Issue 6
Most read in this issue
- Frontotemporal Lobar Degeneration from the Perspective of the New Clinical‑ Pathological Correlations
- Tuberous Sclerosis Complex in Children Followed from Neonatal Period for Prenatally Diagnosed Cardiac Rhabdomyoma – Two Case Reports
- Pineal Region Expansions
- Occipital Condyle Fractures