Abnormální mikrostruktura spánku a autonomní odpověď u narkolepsie
Autoři:
J. Vaňková; P. Bušek; J. Volná; K. Šonka; S. Nevšímalová
Působiště autorů:
Neurologická klinika 1. LF MU a VFN Praha
Vyšlo v časopise:
Cesk Slov Neurol N 2007; 70/103(2): 158-162
Kategorie:
Původní práce
Souhrn
Patofyziologickým podkladem narkolepsie-kataplexie je ztráta hypokretinových neuronů posterolaterálního hypotalamu. Předpokládaným projevem tohoto deficitu je změna mikrostruktury a autonomních funkcí ve spánku u těchto pacientů. Cílem studie bylo hodnocení mikrostruktury NREM (non-rapid eye movement) spánku metodou sledování cyklických alternujících vzorců (CAP) a změny variability srdeční frekvence (HRV). Do studie bylo zahrnuto 15 pacientů s narkolepsií-kataplexií (průměrný věk 35 ± 8,5; věkové rozmezí 22-44 let) a 15 zdravých kontrol (31 ± 11,4;19-48 let). Obě skupiny podstoupily 2 následná polysomnografická vyšetření, pro analýzu CAP a HRV byla zpracována data ze 2. noci. Prokázali jsme signifikantní snížení CAP, provázené snížením LF a zvýšením HF složky při redukci poměru LF/HF v průběhu NREM spánku. Výsledky vyjadřují poruchu kolísání prahu probuzení u narkolepsie-kataplexie, která je provázena redukcí tonu sympatiku během NREM spánku. Domníváme se, narkolepsie nevzniká pouze v důsledku poruchy regulace REM spánku, nýbrž že je současně vlivem deficientní hypokretinové modulace porušena i regulace NREM spánku.
Klíčová slova:
narkolepsie – hypokretin – cyklický alternující vzorek – variabilita srdeční frekvence
Zdroje
1. Mignot E, Lin X, Arrigoni J, Macaubas C, Olive F, Hallmayer J et al. DQB1*0602 and DQA1*0102 (DQ1) are better markers than DR2 for narcolepsy in Caucasian and black Americans. Sleep 1994 17: 60–7.
2. American Academy of Sleep Medicine. International classification of sleep disorders (ICSD): Diagnostic and coding manual. 2nd ed. Westchester (Ill): American Academy of Sleep Medicine, 2005.
3. Nishino N, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000 355: 39–40.
4. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S et al. The role
of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 2002 59: 1553–62.
5. Dauvilliers Y, Baumann CR, Maly FE, Billiard M, Bassetti C. CSF hypocretin-1 levels in narcolepsy, Kleine–Levin syndrome, other hypersomnias and neurological conditions. J Neurol Neurosurg Psychiatry 2003 74: 1667–73.
6. Hungs M, Mignot E. Hypocretin/orexin, sleep, and narcolepsy. BioEssays 2001 23: 397–408.
7. Burlet S, Tyler CJ, Leonard CS: Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J Neurosci 2002 22: 2862–72.
8. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scamell TE. Behavioral state instability in orexin knock-out mice. J Neurosci 2004 24: 6291– 300.
9. Terzano MG, Mancia D, Salati MR, Costani G, Decebrino A, Parrino L.
The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 1985 8: 137–45.
10. Terzano MG, Parrino L, Spaggiari MC. The cyclic alternating pattern sequences in the dynamic organization of sleep. Electroencephalogr Clin Neurophysiol 1988 69: 437–47.
11. Terzano MG, Parrino L. Clinical applications of cyclic alternating pattern. Physiol Behav 1993 54: 807-13.
12. Zucconi M, Oldani A, Ferini-Strambi L, Smirne S. Arousal fluctuations in non-rapid eye movement parasomnias: the role of cyclic alternating pattern as a measure of sleep instability. J Clin Neurophysiol 1995 12: 147-54.
13. Ferini-Strambi L, Bianchi A, Zucconi M, Oldani A, Castronovo V, Smirne S. The impact of cyclic alternating pattern on heart rate variability during sleep in healthy young adults. Clin Neurophysiol 2000 111: 99–101.
14. Ferri R, Parrino L, Smerieri A, Terzano MG, Elia M, Musumeci SA et al. Cyclic alternating pattern and spectral analysis of heart rate variability during normal sleep. J Sleep Res 2000 9: 13–18.
15. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991 84: 1482-92.
16. Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system of sleep stages of human subjects. Washington DC: US Government Printing Office, US Public Health Service1968.
17. Terzano MG, Parrino L, Smerieri A, Chervin R, Chocroverty S, Guilleminault C et al. Consensus report. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med 2001 2: 537–53.
18. Mukai J, Uchida S, Miyazaki S, Nishihara K, Honda Y. Spectral analysis of all-night human sleep EEG in narcoleptic patients and normal subjects. J Sleep Res 2003 12:63–71.
19. Sforza E, Jouny C, Ibanez V. Cardiac activation during arousal in humans: further evidence for hierarchy in the arousal response. Clin Neurophysiol 2000 111: 1611–9.
20. Ferri R, Miano S, Bruni O, Vankova J. NREM sleep alterations in narcolepsy/cataplexy. Clin Neurophysiol 2005 116: 2675-84.
21. Bayer L, Serafin M, Eggerman E, Saint-Mleuux B, Machard D, Jones BE et al. Exclusive postsynaptic action of hypocretin–orexin on sublayer 6b cortical neurons. J Neurosci 2004 24: 6760–4.
22. Kilduff TS, Peyron C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci 2000 23: 359-65.
23. Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, et al. Orexins, orexinergic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 1999 96: 748-53.
24. Peyron C, Tighe DK, van den Pol AN, Lecea L, Heller HC, Sutcliffe JG et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 1998 18(23): 9996-10015.
25. Ehmke H, Just A. The orexins: linking circulatory control with behavior. Am J Physiol Regul Integr Comp Physiol 2003 285: R519-21.
26. Ciriello J, Li Z, De Oliviera CV. Cardioacceleratory responses to hypocretin-1 injections into rostral ventromedial medulla. Brain Res 2003 991(1-2):84-95.
27. Dun NJ, Le Dun S, Chen CT, Hwang LL, Kwok EH, Chang JK. Orexins: a role in medullary sympathetic outflow. Regul Pept 2000 96: 65-70.
28. Machado BH, Bonagamba LG, Dun SL, Kwok EH, Dun, NJ. Pressor response to microinjection of orexin/hypocretin into rostral ventrolateral medulla of awake rats. Regul Pept 2002 104(1-3): 75-81.
29. Llewellyn-Smith IJ, Martin CL, Marcus JN, Yanagisawa M, Minson JB, Scammell TE. Orexin-immunoreactive inputs to rat sympathetic preganglionic neurons. Neurosci Lett 2003 351: 115-119.
30. Yoss R, Moyer A, Ogle K. The pupillogram and narcolepsy: a method to measure decreased levels of wakefulness. Neurology 1969 19: 921-928.
31. Sachs C, Kaijser L. Autonomic control of cardiovascular reflexes in narcolepsy. J Neurol Neurosurg Psychiatry 1980 43(6): 535-539.
32. Caracan I: Erectile dysfunction in narcoleptic patients. Sleep 1996 9: 227- 231.
33. Guilleminault C, Heinzer R, Mignot E, Black J. Investigations into the neurologic basis of narcolepsy. Neurology 1998 50 (2 Suppl 1): S8-S15.
Štítky
Dětská neurologie Neurochirurgie NeurologieČlánek vyšel v časopise
Česká a slovenská neurologie a neurochirurgie
2007 Číslo 2
Nejčtenější v tomto čísle
- Epilepsie a cyklus spánku a bdění
- Súčasný pohľad na diagnostiku a terapiu afázie
- Komplikace operací z předního přístupu pro degenerativní onemocnění krční páteře
- Zhoršování epileptických záchvatů a epilepsií antiepileptiky - je to možné?