Recommendations for the use of arterial spin labeling in clinical neuroimaging
Authors:
Y. Prysiazhniuk 1,2; D. Kala 1; ; Z. Holubová 2; B. Jurášek 2; L. Michal 1; J. Šanda 2; P. Janský 3; J. Tintěra 4; J. Petr 5,6; M. Kynčl 2; J. Otáhal 1
Authors‘ workplace:
Ústav patologické fyziologie, 2. LF UK, Praha
1; Klinika zobrazovacích metod, 2. LF UK a FN Motol, Praha
2; Neurologická klinika, 2. LF UK a FN Motol, Praha
3; Pracoviště radiodiagnostiky a intervenční radiologie, IKEM, Praha
4; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical, Cancer Research, Drážďany, Německo
5; Department of Radiology and Nuclear, Medicine, Amsterdam Neuroscience, Amsterdam University Medical, Center, Location VUmc, Amsterdam, Nizozemsko
6
Published in:
Cesk Slov Neurol N 2025; 88(1): 22-31
Category:
Review Article
doi:
https://doi.org/10.48095/cccsnn202522
Overview
Arterial spin labeling (ASL) is a non-invasive MRI method used to image cerebral perfusion. Given increasing concerns regarding the use of gadolinium-based contrast agents and significant technical advancements in ASL implementation, the method is gaining attention in various diagnostic applications. This review article aims to familiarize readers with the fundamentals of ASL sequence implementation in neuroradiology, discuss optimal scanning parameters for achieving the highest quality and accuracy in data interpretation, and provide an overview of its diagnostic applications in the areas of cerebrovascular diseases, neuro-oncology, epilepsy, and neurodegeneration. Furthermore, we present illustrative radiological cases and explore the potential future developments of non-invasive ASL techniques.
Keywords:
Neuroimaging – magnetic resonance imaging – perfusion imaging
Sources
1. Kalvach P, Keller J. Variace mozkového průtoku v zobrazovacích metodách. Cesk Slov Neurol N 2007; 70/103 (3): 236–247.
2. Detre JA, Leigh JS, Williams DS et al. Perfusion imaging. Magn Reson Med 1992; 23 (1): 37–45. doi: 10.1002/mrm.1910230106.
3. Roberts DA, Detre JA, Bolinger L et al. Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water. Proc Natl Acad Sci U S A 1994; 91 (1): 33–37. doi: 10.1073/pnas.91.1.33.
4. Alsop DC, Detre JA, Golay X et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2015; 73 (1): 102–116. doi: 10.1002/mrm.25197.
5. Lindner T, Bolar DS, Achten E et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn Reson Med 2023; 89 (5): 2024–2047. doi: 10.1002/mrm.29572.
6. Macíček O, Jirik R, Mikulka J et al. Time-efficient perfusion imaging using DCE- and DSC-MRI. Measurement Sci Rev 2018; 18 (6): 262–271. doi: 10.1515/msr-2018-0036.
7. Boxerman JL, Quarles CC, Hu LS et al. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 2020; 22 (9): 1262–1275. doi: 10.1093/neuonc/ noaa141.
8. Leyba K, Wagner B. Gadolinium-based contrast agents: why nephrologists need to be concerned. Curr Opin Nephrol Hypertens 2019; 28 (2): 154–162. doi: 10.1097/MNH.0000000000000475.
9. McDonald RJ, McDonald JS, Kallmes DF et al. Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology 2017; 285 (2): 546–554. doi: 10.1148/radiol.2017161595.
10. van der Molen A, Quattrocchi CC, Mallio CA et al. Ten years of gadolinium retention and deposition: ESMRMB-GREC looks backward and forward. Eur Radiol 2024; 34 (1): 600–611. doi: 10.1007/s00330-023-10281-3.
11. Proença F, Guerreiro C, Sá G et al. Neuroimaging safety during pregnancy and lactation: a review. Neuroradiology 2021; 63 (6): 837–845. doi: 10.1007/s00234-021-02675-1.
12. Wamelink IJHG, Hempel HL, van de Giessen E et al. The patients’ experience of neuroimaging of primary brain tumors: a cross-sectional survey study. J Neurooncol 2023; 162 (2): 307–315. doi: 10.1007/s11060-023-04290-x.
13. Willats L, Calamante F. The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI. NMR Biomed 2013; 26 (8): 913–931. doi: 10.1002/nbm.2833.
14. Maral H, Ertekin E, Tunçyürek Ö et al. Effects of susceptibility artifacts on perfusion MRI in patients with primary brain tumor: a comparison of arterial spin-labeling versus DSC. AJNR Am J Neuroradiol 2020; 41 (2): 255–261. doi: 10.3174/ajnr.A6384.
15. Oluwasola IE, Ahmad AL, Shoparwe NF et al. Gadolinium based contrast agents (GBCAs): uniqueness, aquatic toxicity concerns, and prospective remediation. J Contam Hydrol 2022; 250: 104057. doi: 10.1016/j.jconhyd.2022.104057.
16. Clement P, Petr J, Dijsselhof MBJ et al. A beginner’s guide to arterial spin labeling (ASL) image processing. Front Radiol 2022; 2: 929533. doi: 10.3389/fradi.2022. 929533.
17. Mutsaerts HJMM, Petr J, Groot P et al. ExploreASL: an image processing pipeline for multi-center ASL perfusion MRI studies. Neuroimage 2020; 219: 117031. doi: 10.1016/j.neuroimage.2020.117031.
18. Chappell MA, Kirk TH, Craig MS et al. BASIL: a toolbox for perfusion quantification using arterial spin labelling. Imag Neurosci 2023; 1: 1–16. doi: 10.1162/imag_a_00041.
19. Fan H, Mutsaerts HJMM, Anazodo U et al. ISMRM open science initiative for perfusion imaging (OSIPI): ASL pipeline inventory. Magn Reson Med 2024; 91 (5): 1787–1802. doi: 10.1002/mrm.29869.
20. Amukotuwa SA, Yu C, Zaharchuk G. 3D pseudocontinuous arterial spin labeling in routine clinical practice: a review of clinically significant artifacts. J Magn Reson Imaging 2016; 43 (1): 11–27. doi: 10.1002/jmri.24873.
21. Kakuda W, Lansberg MG, Thijs VN et al. Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J Cereb Blood Flow Metab 2008; 28 (5): 887–891. doi: 10.1038/sj.jcbfm.9600604.
22. Wang DJJ, Alger JR, Qiao JX et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced MRI. Stroke 2012; 43 (4): 1018–1024. doi: 10.1161/STROKEAHA.111.631929.
23. Zhang M, Shi Q, Yue Y et al. Evaluation of T2-FLAIR combined with ASL on the collateral circulation of acute ischemic stroke. Neurol Sci 2022; 43 (8): 4891–4900. doi: 10.1007/s10072-022-06042-7.
24. de Havenon A, Haynor DR, Tirschwell DL et al. Association of collateral blood vessels detected by arterial spin labeling magnetic resonance imaging with neurological outcome after ischemic stroke. JAMA Neurol 2017; 74 (4): 453–458. doi: 10.1001/jamaneurol.2016.4491.
25. Zhao MY, Armindo RD, Gauden AJ et al. Revascularization improves vascular hemodynamics − a study assessing cerebrovascular reserve and transit time in Moyamoya patients using MRI. J Cereb Blood Flow Metab 2023; 43 (Suppl 2): 138–151. doi: 10.1177/0271678X221140343.
26. Hodel J, Leclerc X, Kalsoum E et al. Intracranial arteriovenous shunting: detection with arterial spin-labeling and susceptibility-weighted imaging combined. Am J Neuroradiol 2017; 38 (1): 71–76. doi: 10.3174/ajnr.A4961.
27. Hirschler L, Sollmann N, Schmitz-Abecassis B et al. Advanced MR techniques for preoperative glioma characterization: part 1. J Magn Reson Imaging 2023; 57 (6): 1655–1675. doi: 10.1002/jmri.28662.
28. Gong E, Pauly JM, Wintermark M et al. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 2018; 48 (2): 330–340. doi: 10.1002/jmri.25970.
29. Wamelink IJHG, Azizova A, Booth TC et al. Brain tumor imaging without gadolinium-based contrast agents: feasible or fantasy? Radiology 2024; 310 (2): e230793. doi: 10.1148/radiol.230793.
30. Calvo-Imirizaldu M, Aramendía-Vidaurreta V, Sánchez-Albardíaz C et al. Clinical utility of intraoperative arterial spin labeling for resection control in brain tumor surgery at 3 T. NMR Biomed 2023; 26: e4938. doi: 10.1002/nbm.4938.
31. Alsaedi A, Doniselli F, Jäger HR et al. The value of arterial spin labelling in adults glioma grading: systematic review and meta-analysis. Oncotarget 2019; 10 (16): 1589–1601. doi: 10.18632/oncotarget.26674.
32. Choi YJ, Kim HS, Jahng GH et al. Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol 2013; 54 (4): 448–454. doi: 10.1177/0284185112474916.
33. Prysiazhniuk Y, Server A, Leske H et al. Diffuse glioma molecular profiling with arterial spin labeling and dynamic susceptibility contrast perfusion MRI: a comparative study. Neurooncol Adv 2024; 6 (1): vdae113. doi: 10.1093/noajnl/vdae113.
34. Sunwoo L, Yun TJ, You SH et al. Differentiation of glioblastoma from brain metastasis: qualitative and quantitative analysis using arterial spin labeling MR imaging. PLoS One 2016; 11 (11): e0166662. doi: 10.1371/journal.pone.0166662.
35. Ohmura K, Hiroyuki T, Hara A. Peritumoral edema in gliomas: a review of mechanisms and management. Biomedicines 2023; 11 (10): 2731. doi: 10.3390/biomedicines11102731.
36. Nabavizadeh SA, Akbari H, Ware JB et al. Arterial spin labeling and dynamic susceptibility contrast-enhanced MR imaging for evaluation of arteriovenous shunting and tumor hypoxia in glioblastoma. Sci Rep 2019; 9 (1): 8747. doi: 10.1038/s41598-019- 45312-x.
37. Pemberton HG, Wu J, Kommers I et al. Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms. Sci Rep 2023; 13 (1): 18911. doi: 10.1038/s41598-023-44794-0.
38. Kynčl M, Holubová Z, Tintěra J et al. Doporučení pro strukturální zobrazení MR mozku v diagnostice epilepsie. Cesk Slov Neurol N 2023; 86 (1): 18–24. doi: 10.48095/cccsnn202318.
39. Malmgren K, Edelvik A. Long-term outcomes of surgical treatment for epilepsy in adults with regard to seizures, antiepileptic drug treatment and employment. Seizure 2017; 44: 217–224. doi: 10.1016/j.seizure.2016.10.015.
40. Téllez-Zenteno JF, Ronquillo LH, Moien-Afshari F et al. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 2010; 89 (2–3): 310–318. doi: 10.1016/j.eplepsyres.2010. 02.007.
41. Gaxiola-Valdez I, Singh S, Perera T et al. Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI. Brain 2017; 140 (11): 2895–2911. doi: 10.1093/brain/awx241.
42. Sierra-Marcos A, Carreňo M, Setoain X et al. Accuracy of arterial spin labeling magnetic resonance imaging (MRI) perfusion in detecting the epileptogenic zone in patients with drug-resistant neocortical epilepsy: comparison with electrophysiological data, structural MRI, SISCOM and FDG-PET. Eur J Neurol 2016; 23 (1): 160–167. doi: 10.1111/ene.12826.
43. Storti SF, Galazzo IB, Felice AD et al. Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. Neuroimage 2014; 102 (Pt 1): 49–59. doi: 10.1016/j.neuroimage.2013.06.028.
44. Boscolo Galazzo I, Mattoli MV, Pizzini FB et al. Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of (18) F-FDG PET and arterial spin labeling. Neuroimage Clin 2016; 11: 648–657. doi: 10.1016/j.nicl.2016.04.005.
45. Xu H, Chen K, Zhu H et al. Neurovascular coupling changes in patients with magnetic resonance imaging negative focal epilepsy. Epilepsy Behav 2023; 138: 109035. doi: 10.1016/j.yebeh.2022.109035.
46. Téllez-Zenteno JF, Ronquillo LH, Moien-Afshari F et al. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 2010; 89 (2): 310–318. doi: 10.1016/j.eplepsyres. 2010.02.007.
47. Pasca L, Sanvito F, Ballante E et al. Arterial spin labelling qualitative assessment in paediatric patients with MRI-negative epilepsy. Clin Radiol 2021; 76 (12): 942.e15–942.e23. doi: 10.1016/j.crad.2021.09.016.
48. Pottkämper JCM, Verdijk JPAJ, Aalbregt E et al. Changes in postictal cerebral perfusion are related to the duration of electroconvulsive therapy-induced seizures. Epilepsia 2024; 65 (1): 177–189. doi: 10.1111/epi. 17831.
49. Binnewijzend MAA, Kuijer JPA, Benedictus MR et al. Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 2013; 267 (1): 221–230. doi: 10.1148/radiol.12120928.
50. Kamagata K, Motoi Y, Hori M et al. Posterior hypoperfusion in Parkinson’s disease with and without dementia measured with arterial spin labeling MRI. J Magn Reson Imaging 2011; 33 (4): 803–807. doi: 10.1002/ jmri.22515.
51. Mak E, Dounavi ME, Low A et al. Proximity to dementia onset and multi-modal neuroimaging changes: the prevent-dementia study. Neuroimage 2021; 229: 117749. doi: 10.1016/j.neuroimage.2021.117749.
52. Padrela BE, Lorenzini L, Collij LE et al. Increased cerebral blood flow is associated with higher baseline amyloid burden in a cognitively unimpaired population. Alzheimers Dementia 2023; 19 (S3): e065779. doi: 10.1002/alz.065779.
53. Hernandez-Garcia L, Aramendía-Vidaurreta V, Bolar DS et al. Recent technical developments in ASL: a review of the state of the art. Magn Reson Med 2022; 88 (5): 2021–2042. doi: 10.1002/mrm.29381.
54. Sameš M, Zolal A, Radovnický T et al. Použití metod magnetické rezonance pro posouzení cerebrovaskulární rezervní kapacity. Cesk Slov Neurol N 2009; 72/105 (4): 323–330.
55. Zhao MY, Armindo RD, Gauden AJ et al. Revascularization improves vascular hemodynamics − a study assessing cerebrovascular reserve and transit time in Moyamoya patients using MRI. J Cereb Blood Flow Metab 2023; 43 (Suppl 2): 138–151. doi: 10.1177/0271678X221140343.
56. van Grinsven EE, Guichelaar J, Philippens ME et al. Hemodynamic imaging parameters in brain metastases patients – agreement between multi-delay ASL and hypercapnic BOLD. J Cereb Blood Flow Metab 2023; 43 (12): 2072–2084. doi: 10.1177/0271678X231196989.
57. Mahroo A, Buck MA, Huber J et al. Robust multi-TE ASL-based blood-brain barrier integrity measurements. Front Neurosci 2021; 15: 719676. doi: 10.3389/fnins.2021.719676.
58. Moyaert P, Padrela BE, Morgan CA et al. Imaging blood-brain barrier dysfunction: a state-of-the-art review from a clinical perspective. Front Aging Neurosci 2023; 15: 1132077. doi: 10.3389/fnagi.2023.11 32077.
59. Qin Q, Alsop DC, Bolar DS et al. Velocity-selective arterial spin labeling perfusion MRI: a review of the state of the art and recommendations for clinical implementation. Magn Reson Med 2022; 88 (4): 1528–1547. doi: 10.1002/mrm.29371.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery

2025 Issue 1
Most read in this issue
- Guidelines of the Cerebrovascular Section of the Czech Neurological Society of the CMA JEP and the Czech Society for Interventional Radiology of the CMA JEP for the indication of mechanical recanalization – version 2024
- Idiopathic orofacial pain
- Options for the use of epidural stimulation in individuals with motor complete spinal cord injury
- Normative data of the Montreal Cognitive Assessment for the blind (MoCA-22) for the Czech population