Healthcare management of children with an acquired demyelinating syndrome in the Czech Republic
Authors:
T. Toman 1; A. Svěráková 1; P. Kršek 1; Z. Libá 1; Projekt Demon
Authors‘ workplace:
Neurologické oddělení, Nemocnice Jihlava
2; Dětská klinika Masarykovy nemocnice, Ústí nad Labem
3; Dětské oddělení, Oblastní nemocnice Kolín
4; Klinika dětské neurologie, LF MU a FN Brno
5; Neurologická klinika LF UK a FN Plzeň
6; Klinika dětského a dorostového lékařství, 1. LF UK a VFN v Praze
7; Pediatrické oddělení, FN Bulovka, Praha
8; Ambulance dětské neurologie, Jablonec nad Nisou
9; Dětské a novorozenecké oddělení, Pardubická nemocnice
10; Oddělení dětské neurologie, Fakultní, Thomayerova nemocnice, Praha
11; Ambulance dětské neurologie, České Budějovice
12; Neurologická klinika LF OU a FN Ostrava
13; Dětské oddělení, Krajská nemocnice, Tomáše Bati, Zlín
14; Neurologická klinika, LF UK a FN Hradec Králové
15
Published in:
Cesk Slov Neurol N 2024; 87(3): 191-196
Category:
Original Paper
doi:
https://doi.org/10.48095/cccsnn2024191
Overview
Aim: The aim of this study was to investigate the distribution and extent of healthcare provided to children with a suspected acquired demyelinating syndrome (including acute disseminated encephalomyelitis, clinically isolated syndrome, multiple sclerosis and neuromyelitis optica spectrum disorder) and to identify areas for care improvement in the Czech Republic. Patients and methodology: Electronic questionnaire survey at all inpatient departments of pediatric neurology (N = 7) and pediatric departments (N = 22) at the regional and university hospital level. Responses were obtained from all contacted hospitals. Results: All inpatient departments of pediatric neurology and 10 pediatric departments are involved in the care of patients. All have the necessary diagnostic methods available, but therapeutic options differ. We identified specific differences in the diagnostic approach -in the indication and interpretation of examinations and in the use of current diagnostic criteria. In six regions, care is provided primarily by departments of pediatric neurology. In the remaining eight regions, patients are admitted to pediatric departments with an available pediatric neurology consultant. More complex cases are transferred to pediatric neurology departments, where the diagnostic approach is more comprehensive and the therapeutic options are more extensive. Conclusion: In the Czech Republic, healthcare for children with an acquired demyelinating syndrome is at a high level, but it is not standardized. The most appropriate standard of care is provided in specialized care centers for multiple sclerosis and neuromyelitis optica spectrum disorders. Given the distribution of care, specialized education must also include pediatricians and pediatric neurology consultants.
Keywords:
Pediatrics – Multiple sclerosis – Czech Republic – demyelinating autoimmune disorders – care management – tertiary care centers
Sources
1. Banwell B, Bennett JL, Marignier R et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: international MOGAD panel proposed criteria. Lancet Neurol 2023; 22(3): 268– 282. doi: 10.1016/ S1474-4422(22)00431-8.
2. Langer-Gould A, Zhang JL, Chung J et al. Incidence of acquired CNS demyelinating syndromes in a multiethnic cohort of children. Neurology 2011; 77(12): 1143– 1148. doi: 10.1212/ WNL.0b013e31822facdd.
3. Banwell B, Kennedy J, Sadovnick D et al. Incidence of acquired demyelination of the CNS in Canadian children. Neurology 2009; 72(3): 232– 239. doi: 10.1212/ 01.wnl.0000339482.84392.bd.
4. Ketelslegers IA, Catsman-Berrevoets CE, Neuteboom RF et al. Incidence of acquired demyelinating syndromes of the CNS in Dutch children: a nationwide study. J Neurol 2012; 259(9): 1929– 1935. doi: 10.1007/ s00415-012-6441-6.
5. Rostasy K, Bajer-Kornek B, Venkateswaran S et al. Differential diagnosis and evaluation in pediatric inflammatory demyelinating disorders. Neurology 2016; 87(Suppl 2): S28– S37. doi: 10.1212/ WNL.0000000000002878.
6. Krupp LB, Tardieu M, Amato MP et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler 2013; 19(10): 1261– 1267. doi: 10.1177/ 1352458513484547.
7. Wingerchuk DM, Banwell B, Bennett JL et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85(2): 177– 189. doi: 10.1212/ WNL.0000000000001729.
8. Chitnis T, Ness J, Krupp L et al. Clinical features of neuromyelitis optica in children US Network of Pediatric MS Centers report. Neurology 2016; 86(3): 245– 252. doi: 10.1212/ WNL.0000000000002283.
9. Thompson AJ, Banwell B, Barkhof F et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17(2): 162– 173. doi: 10.1016/ S1474-4422(17)30470-2.
10. Havrdová Kubala E, Piťha J. Klinický doporučený postup pro diagnostiku a léčbu roztroušené sklerózy a neuromyelitis optica a onemocnění jejího širšího spektra. [online]. Dostupné z: http:/ / www.czech-neuro.cz/ content/ uploads/ 2020/ 04/ rs_odborna-2.0_final_pub_web-2.pdf.
11. Stankiewicz JM, Glanz BI, Healy BC et al. Brain MRI lesion load at 1.5T and 3T versus clinical status in multiple sclerosis. J Neuroimaging 2011; 21(2): e50– e56. doi: 10.1111/ j.1552-6569.2009.00449.x.
12. Prince MR, Zhang H, Zou Z et al. Incidence of immediate gadolinium contrast media reactions. AJR Am J Roentgenol 2011; 196(2): W138– W143. doi: 10.2214/ AJR.10.4885.
13. Hunt CH, Hartman RP, Hesley GK. Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: retrospective review of 456,930 doses. AJR Am J Roentgenol 2009; 193(4): 1124– 1127. doi: 10.2214/ AJR.09.2520.
14. Wattjes MP, Ciccarelli O, Reich DS et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021; 20(8): 653– 670. doi: 10.1016/ S1474-4422(21)00095-8.
15. Sombekke MH, Wattjes MP, Balk LJ et al. Spinal cord lesions in patients with clinically isolated syndrome: a powerful tool in diagnosis and prognosis. Neurology 2013; 80(1): 69– 75. doi: 10.1212/ WNL.0b013e31827
b1a67.
16. Deiva K, Absoud M, Hemingway C et al. Acute idiopathic transverse myelitis in children: early predictors of relapse and disability. Neurology 2015; 84(4): 341– 349. doi: 10.1212/ WNL.0000000000001179.
17. Tillema JM, Pirko I. Neuroradiological evaluation of demyelinating disease. Ther Adv Neurol Disord 2013; 6(4): 249– 268. doi: 10.1177/ 1756285613478870.
18. Brisset JC, Kremer S, Hannoun S et al. New OFSEP recommendations for MRI assessment of multiple sclerosis patients: special consideration for gadolinium deposition and frequent acquisitions. J Neuroradiol 2020; 47(4): 250– 258. doi: 10.1016/ j.neurad.2020.01.083.
19. Sechi E, Krecke KN, Pittock SJ et al. Frequency and characteristics of MRI-negative myelitis associated with MOG autoantibodies. Mult Scler 2021; 27(2): 303– 308. doi: 10.1177/ 1352458520907900.
20. Meyer P, Leboucq N, Molinari N et al. Partial acute transverse myelitis is a predictor of multiple sclerosis in children. Mult Scler 2014; 20(11): 1485– 1493. doi: 10.1177/ 1352458514526943.
21. Trip SA, Schlottmann PG, Jones SJ et al. Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: evidence that axonal loss is a substrate of MRI-detected atrophy. Neuroimage 2006; 31(1): 286– 293. doi: 10.1016/ j.neuroimage.
2005.11.051.
22. Thomas T, Branson HM, Verhey LH et al. The demographic, clinical, and magnetic resonance imaging (MRI) features of transverse myelitis in children. J Child Neurol 2012; 27(1): 11– 21. doi: 10.1177/ 0883073811420495.
23. Bruijstens AL, Lechner C, Flet-Berliac L et al. E.U. paediatric MOG consortium consensus: part 1 – classification of clinical phenotypes of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. Eur J Paediatr Neurol 2020; 29: 2– 13. doi: 10.1016/
j.ejpn.2020.10.006.
24. Hacohen Y, Absoud M, Deiva K et al. Myelin oligodendrocyte glycoprotein antibodies are associated with a non-MS course in children. Neurol Neuroimmunol Neuroinflamm 2015; 2(2): e81. doi: 10.1212/ NXI.0000 000000000081.
25. Wendel EM, Thonke HS, Bertolini A et al. Temporal dynamics of MOG antibodies in children with acquired demyelinating syndrome. Neurol Neuroimmunol Neuroinflamm 2022; 9(6): e200035. doi: 10.1212/ NXI.0000 000000200035.
26. Lechner C, Breu M, Wendel EM et al. Epidemiology of pediatric NMOSD in Germany and Austria. Front Neurol 2020; 11: 415. doi: 10.3389/ fneur.2020.00415.
27. Nouri MN, Yeh EA. Neuroinflammatory and demyelinating disorders of childhood. Clin Child Neurol 2020; 9: 651– 677. doi: 10.1007/ 978-3-319-43153-6_20.
28. Bennett JL. Optic neuritis. Continuum (Minneap
Minn) 2019; 25(5): 1236– 1264. doi: 10.1212/ CON.00000 00000000768.
29. Pisa M, Croese T, Dalla Costa G et al. Subclinical anterior optic pathway involvement in early multiple sclerosis and clinically isolated syndromes. Brain 2021; 144(3): 848– 862. doi: 10.1093/ brain/ awaa458.
30. Šťastná D, Menkyová I, Horáková D. Progresivní roztroušená skleróza ve světle nejnovějších poznatků. Cesk Slov Neurol N 2023; 86(1): 10– 17. doi: 10.48095/ cccsnn202310.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2024 Issue 3
Most read in this issue
- Relationship between the occurrence of benign fasciculations, patient‘s psychological profile, biochemical parameters, and mutations in the SMN1 gene
- Virtual reality in rehabilitation of patients after stroke
- Management of anaesthesia in children with neuromuscular diseases
- Detection of insufficient effort and simulation of cognitive impairment during neuropsychological examination using RBANS and SIMS methods