Dynamics of glucose concentration changes during ketogenic diet initiation in pediatric patients with drug-resistant epilepsy – analysis of glucose values in individual patients
Authors:
K. Brožová 1,2; J. Michalec 3; M. Brabec 4; P. Bořilová 1; E. Povolná 3; P. Kohout 2,5; J. Brož 3
Authors‘ workplace:
Oddělení dětské neurologie, Fakultní, Thomayerova nemocnice, Praha
1; 3. LF UK Praha
2; Interní klinika 2. LF UK a FN Motol, Praha
3; Ústav informatiky, AV ČR, v. v. i.
4; Interní klinika 3. LF UK a FN Motol, Praha
5
Published in:
Cesk Slov Neurol N 2024; 87(3): 197-207
Category:
Original Paper
doi:
https://doi.org/10.48095/cccsnn2024197
Overview
Aim: The aim was to analyze individual changes in glucose concentration before starting the ketogenic diet (KD) and during the first 5 days of its use in individual non-diabetic children with drug-resistant epilepsy. Subjects and methodology: Ten pediatric patients with pharmaco-resistant epilepsy started on KD according to a non-fasting KD protocol with a ketogenic ratio (KR) that gradually increased day by day from 1 : 1, 2 : 1, 3 : 1 to 3.5 : 1. Continuous glucose monitoring (CGM) was performed 36 h before initiation and then over 5 days during increasing KR. Results: Mean glycemic control estimates for each dietary ratio ranged from 6.03 (95% confidence interval [CI] 5.92–6.14) mmol/l on a normal diet to 2.56 (CI 95%: 2.46–2.66) mmol/l on 3.5 : 1 KR within all measured values and from 4.91 (CI 95%: 4.75–5.06) mmol/l on a normal diet to 1.85 (CI 95%: 1.53–2.17) mmol/l on 3.5 : 1 KR within fasting values measured between 5:00 a.m. and 6:00 a.m. CGM showed hypoglycemic events during KD initiation in 9 patients. Conclusion: Analysis of individual patient data showed a trend of gradually decreasing glycemia with increasing KR. This trend seems to be stronger for all data obtained compared to those during fasting (period 5.00–6.00 am). In most patients, episodes of asymptomatic hypoglycemia were captured during diet initiation.
Keywords:
ketogenic diet – drug-resistant epilepsy – glucose concentration – pediatric patients
Sources
1. deCampo DM, Kossoff EH. Ketogenic dietary therapies for epilepsy and beyond. Curr Opin
Clin Nutr Metab Care 2019; 22(4): 264– 268. doi: 10.1097/
MCO.0000000000000565.
2. Horák O. Ketogenní dieta – účinná nefarmakologická léčba dětské a adolescentní epilepsie. Cesk Slov Neurol N 2019; 82/ 115(1): 8– 14. doi:10.14735/
amcsnn20198.
3. Freeman JM, Kelly MT, Freeman BF. The epilepsy diet treatment: an introduction to the ketogenic diet. New York: Demos 1994: 65– 100.
4. Kim DW, Kang HC. Benefits of the non-fasting ketogenic diet compared with the initial fasting ketogenic diet. Pediatrics 2004; 114(6): 1627– 1630. doi: 10.1542/ peds.2004-1001.
5. Martin-McGill KJ, Bresnahan R, Levy RG et al. Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst Rev 2020; 6(6): CD001903. doi: 10.1002/ 14651858.CD001903.pub5
6. Wirrell EC, Darwish HZ, Williams-Dyjur C et al. Is a fast necessary when initiating the ketogenic diet? J Child Neurol 2002; 17(3): 179– 182. doi: 10.1177/ 088307380201700
305.
7. Bergqvist AG, Schall JI, Gallagher PR et al. Fasting versus gradual initiation of the ketogenic diet: a prospective, randomized clinical trial of efficacy. Epilepsia 2005; 46(11): 1810– 1819. doi: 10.1111/ j.1528-1167.2005.
00282.x.
8. Kossoff EH, Zupec-Kania BA, Auvin S et al. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open 2018; 21(2): 175– 192. doi: 10.1002/ epi4.12225.
9. De Giorgis V, Tagliabue A, Bisulli F et al. Ketogenic dietary therapies in epilepsy: recommendations of the Italian League against Epilepsy Dietary Therapy Study Group. Front Neurol 2023; 14: 1215618. doi: 10.3389/ fneur.2023.1215618.
10. Martin-McGill KJ, Jackson CF, Bresnahan R et al. Ketogenic diet for drug resistant epilepsy. Cochrane
Database Syst Rev 2018; 11(11): CD001903. doi: 10.1002/
14651858.CD001903.pub4.
11. Rho JM. How does the ketogenic diet induce anti-seizure effects? Neurosci Lett 2017; 637: 4– 10. doi: 10.1016/
j.neulet.2015.07.034.
12. Schwartz RM, Boyes S, Aynsley-Green A. Metabolic effects of three ketogenic diets in the treatment of severe epilepsy. Devel Med Child Neurol 1989; 31(2): 152– 160. doi: 10.1111/ j.1469-8749.1989.tb
03973.x.
13. Cai QY, Zhou ZJ, Luo R et al. Safety and tolerability of the ketogenic diet used for the treatment of refractory childhood epilepsy: a systematic review of published prospective studies. World J Pediatr 2017; 13(6): 528– 536. doi: 10.1007/ s12519-017-0053-2.
14. Schwartz RH, Eaton J, Bower BD et al. Ketogenic diets in the treatment of epilepsy: short-term clinical effects. Devel Med Child Neurol 1989; 31(2): 145– 151. doi: 10.1111/ j.1469-8749.1989.tb03972.x.
15. Schiller K, Avigdor T, Kortas A et al. Monitoring glucose concentrations in children with epilepsy on a ketogenic diet. Healthcare (Basel) 2022; 10(2): 245. doi: 10.3390/ healthcare10020245.
16. Brožová K, Holubová A, Bořilová P et al. Hypoglycemia during treatment with the ketogenic diet in a child with refractory epilepsy-results of continuous glucose monitoring. Neuro Endocrinol Lett 2021; 42(4):
277– 281.
17. Holubová A, Vlasáková M, Mužík J et al. Customizing the types of technologies used by patients with type 1 diabetes mellitus for diabetes treatment: case series on patient experience. JMIR Mhealth Uhealth 2019; 7(7): e11527. doi: 10.2196/ 11527.
18. Brož J, Janíčková Žďárská D, Urbanová J et al. Current level of glycemic control and clinical inertia in subjects using insulin for the treatment of type 1
and type 2 diabetes in the Czech Republic and the Slovak Republic: results of a multinational, multicenter, observational survey (DIAINFORM). Diabetes Ther 2018; 9(5): 1897– 1906. doi: 10.1007/ s13300-018-
0485-2.
19. Mian Z, Hermayer KL, Jenkins A. Continuous glucose monitoring: review of an innovation in diabetes management. Am J Med Sci 2019; 358(5): 332– 339. doi: 10.1016/ j.amjms.2019.07.003.
20. Brožová K, Michalec J, Brabec M et al. Dynamics of glucose concentration during the initiation of ketogenic diet treatment in children with refractory epilepsy: results of continuous glucose monitoring. Epilepsia Open 2023; 8(3): 1021– 1027. doi: 10.1002/ epi4.
12778.14.
21. International Organization for Standardization: in vitro diagnostic test systems – requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus. [online]. Available from: https:/ / www.iso.org/ standard/ 54976.html.
22. Therneau TM, Grambsch PM. Modeling survival data: extending the cox model. New York: Springer
2000.
23. R Core Team: R: a language and environment for statistical computing. R Foundation for statistical computing. [online]. Aailable from: https:/ / www.R-pro-
ject.org.
24. Therneau T. A package for survival analysis in R. R package version 3.5-7. [online]. Available from: https:/ / CRAN.R-project.org/ package=survival.
25. Hoseth E, Joergensen A, Ebbesen F et al. Blood glucose levels in a population of healthy, breast fed, term infants of appropriate size for gestational age. Arch Dis Child Fetal Neonatal Ed 2000; 83(2): F117– F119. doi: 10.1136/ fn.83.2.f117.
26. Hawdon JM, Ward-Platt MP, Aynsley-Green A. Patterns of metabolic adaptation for preterm and term infants in the first neonatal week. Arch Dis Child 1992; 67 (4 Spec No): 357– 365. doi: 10.1136/ adc.67.4_spec_no.357.
27. Owen OE, Morgan AP, Kemp HG et al. Brain metabolism during fasting. J Clin Invest 1967; 46(10): 1589– 1595. doi: 10.1172/ JCI105650.
28. Sokoloff L. Metabolism of ketone bodies by the brain. Annu Rev Med 1973; 24: 271– 280. doi: 10.1146/ annurev.me.24.020173.001415.
29. Randle P, Garland P, Hales C et al. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 281(7285): 785– 789. doi: 10.1016/ s0140-6736(63)91
500-9.
30. Clanton RM, Wu G, Akabani G et al. Control of seizures by ketogenic diet-induced modulation of metabolic pathways. Amino Acids 2017; 49(1): 1– 20. doi: 10.1007/ s00726-016-2336-7.
31. Napoleão A, Fernandes L, Miranda C et al. Effects of calorie restriction on health span and insulin resistance: classic calorie restriction diet vs. ketosis-inducing diet. Nutrients 2021; 13(4): 1302. doi: 10.3390/ nu13041
302.
32. Paoli A. Ketogenic diet for obesity: friend or foe? Int J Environ Res Public Health 2014; 11(2): 2092– 2107. doi: 10.3390/ ijerph110202092.
33. Locatelli CAA, Mulvihill EE. Islet health, hormone secretion, and insulin responsivity with low-carbohydrate feeding in diabetes. Metabolites 2020; 10(11): 455. doi: 10.3390/ metabo10110455.
34. Christiansen M, Bailey T, Watkins E et al. A new-generation continuous glucose monitoring system: improved accuracy and reliability compared with a previous-generation system. Diabetes Technol Ther 2013; 15(10): 881– 888. doi: 10.1089/ dia.2013.0077.
35. Ly TT, Gallego PH, Davis EA et al. Impaired awareness of hypoglycemia in a population-based sample of children and adolescents with type 1 diabetes. Diabetes Care 2009; 32(10): 1802– 1806. doi: 10.2337/ dc09-
0541.
36. Graveling AJ, Frier BM. Impaired awareness of hypoglycemia: a review. Diabetes Metab 2010; 36 (Suppl 3): S64– S74. doi: 10.1016/ S1262-3636(10)70470-5.
37. Seaquist ER, Teff K, Heller SR. Impaired awareness of hypoglycemia in type 1 diabetes: a report of an NIDDK workshop in October 2021. Diabetes Care 2022; 45(12): 2799– 2805. doi: 10.2337/ dc22-1242.
38. Michalec J, Brožová K, Otáhal J et al. Hypoglykemie jako komplikace léčby diabetes mellitus: akutní vliv na funkce centrálního nervového systému. Cesk Slov
Neurol N 2024; 87/ 120: 89– 95. doi: 10.48095/ cccsnn202489.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2024 Issue 3
Most read in this issue
- Relationship between the occurrence of benign fasciculations, patient‘s psychological profile, biochemical parameters, and mutations in the SMN1 gene
- Virtual reality in rehabilitation of patients after stroke
- Management of anaesthesia in children with neuromuscular diseases
- Detection of insufficient effort and simulation of cognitive impairment during neuropsychological examination using RBANS and SIMS methods