Srovnání metabolického profilu zdravého mozku na dvou 3T MR tomografech VIDA Siemens
Authors:
D. Pajuelo 1,2; M. Hájek 1; M. Roček 2; M. Dezortová 1,2
Authors‘ workplace:
Pracoviště radiodiagnostiky a intervenční radiologie, IKEM, Praha
1; Klinika zobrazovacích metod 2. LF UK a FN Motol, Praha
2
Published in:
Cesk Slov Neurol N 2023; 86(2): 134-139
Category:
Original Paper
doi:
https://doi.org/10.48095/cccsnn2023134
Overview
Aim: The aim of this study was to determine whether brain metabolite concentrations measured on Siemens Magnetom VIDA 3T MR tomographs at two different MR units are comparable. Subjects and methods: We measured a group of identical healthy volunteers at both sites over a 24-h period using proton single voxel spectroscopy and MR spectroscopic imaging. We calculated the relative asymmetry in metabolic concentrations and their ratios between tomographs and between hemispheres in various brain regions. Results: Bland-Altman plots showed no significant differences in any of the parameters evaluated between the two tomographs or between the left and right hemispheres. Signal-to-noise ratios were comparable at both sites. The most frequently measured metabolite concentrations (total N-acetylaspartate, total creatine, choline-containing compounds) and their ratios showed differences between tomographs and between hemispheres averaging up to 6% using both short and long echo times for both single voxel MR spectroscopy and spectroscopic imaging. Myo-inositol exhibited a greater difference between hemispheres (max. 14%). Conclusion: Metabolic concentrations and their ratios were comparable at both MR units regardless of the MRI spectroscopic method and sequence echo time. To quantitatively compare the metabolic profiles of patients with control values, it is sufficient to measure only one set of control data and then use this at both sites. The data obtained can also be pooled in multicenter studies.
Keywords:
Brain – proton MR spectroscopy – 3T tomograph – metabolite concentrations – coefficient of asymmetry
Sources
1. Kreis R. Quantitative localized 1H MR spectroscopy for clinical use. Prog Nucl Magn Res Spectroscopy 1997; 31 (2–3): 155–195. doi: 10.1016/S0079-6565 (97) 00014-9.
2. Mlynárik V. Introduction to nuclear magnetic resonance. Anal Biochem 2017; 529: 4–9. doi: 10.1016/j.ab.2016.05.006.
3. Zhu H, Barker PB. MR spectroscopy and spectroscopic imaging of the brain. Methods Mol Biol 2011; 711: 203–226. doi: 10.1007/978-1-61737-992-5_9.
4. Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec 2001; 265 (2): 54–84. doi: 10.1002/ar.1058.
5. Helms G. The principles of quantification applied to in vivo proton MR spectroscopy. Eur J Radiol 2008; 67 (2): 218–229. doi: 10.1016/j.ejrad.2008.02.034.
6. Faghihi R, Zeinali-Rafsanjani B, Mosleh-Shirazi MA et al. Magnetic resonance spectroscopy and its clinical applications: a review. J Med Imaging Radiat Sci 2017; 48 (3): 233–253. doi: 10.1016/j.jmir.2017.06.004.
7. Sitter B, Sjøbakk TE, Larsson HBW et al. Clinical MR spectroscopy of the brain. Tidsskr Nor Laegeforen 2019; 139 (6). doi: 10.4045/tidsskr.17.1099.
8. Dezortová M, Pajuelo D, Hájek M. 1H MR spektroskopie – I. mozek. Ces Radiol 2017; 71 (4): 296–304.
9. Wagnerová D, Urgošík D, Syrůček M et al. Využití kombinace metod magnetické rezonance pro diagnostiku tumorů. Cesk Slov Neurol N 2011; 74/107 (2): 150–156.
10. Klose U. Measurement sequences for single voxel proton MR spectroscopy. Eur J Radiol 2008; 67 (2): 194–201. doi: 10.1016/j.ejrad.2008.03.023.
11. Öz G, Deelchand DK, Wijnen JP et al. Advanced single voxel 1H magnetic resonance spectroscopy techniques in humans: experts’ consensus recommendations. NMR Biomed 2021; 34 (5): e4236. doi: 10.1002/nbm.4236.
12. Skoch A, Jiru F, Bunke J. Spectroscopic imaging: basic principles. Eur J Radiol 2008; 67 (2): 230–239. doi: 10.1016/j.ejrad.2008.03.003.
13. Maudsley AA, Andronesi OC, Barker PB et al. Advanced magnetic resonance spectroscopic neuroimaging: experts’ consensus recommendations. NMR Biomed 2021; 34 (5): e4309. doi: 10.1002/nbm.4309.
14. Provencher SW. Automatic quantification of localized in vivo 1H spectra with LCmodel. NMR Biomed 2001; 14 (4): 260–264. doi: 10.1002/nbm.698.
15. Hajek M, Dezortova M. Introduction to clinical in vivo MR spectroscopy. Eur J Radiol 2008; 67 (2): 185–193. doi: 10.1016/j.ejrad.2008.03.002.
16. SPM. [online]. Available from: https: //www.fil.ion.ucl.ac.uk/spm/doc/.
17. jSIPRO. [online]. Available from: www.sites.google.com/site/jsiprotool/.
18. Gasparovic C, Song T, Devier D et al. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med 2006; 55 (6): 1219–1226. doi: 10.1002/mrm.20901.
19. GraphPad Prism. [online]. Available from: https: // www.graphpad.com/.
20. Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb) 2015; 25 (2): 141–151. doi: 10.11613/BM.2015.015.
21. Wagnerová D. Metabolický profil lidského mozku in vivo v MR obraze a spektru. Praha: Univerzita Karlova 2007.
22. Baker EH, Basso G, Barker PB et al. Regional apparent metabolite concentrations in young adult brain measured by (1) H MR spectroscopy at 3 Tesla. J Magn Reson Imaging 2008; 27 (3): 489–499. doi: 10.1002/jmri.21285.
23. Jayasundar R, Raghunathan P. Evidence for left-right asymmetries in the proton MRS of brain in normal volunteers. Magn Reson Imaging 1997; 15 (2): 223–234. doi: 10.1016/s0730-725x (96) 00342-6.
24. Li X, Abiko K, Sheriff S et al. The distribution of major brain metabolites in normal adults: short echo time whole-brain MR spectroscopic imaging findings. Metabolites 2022; 12 (6): 543. doi: 10.3390/metabo12060543.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2023 Issue 2
Most read in this issue
- Současné a budoucí terapeutické možnosti léčby generalizované formy myasthenia gravis
- Problematika posuzování invalidity po prodělané cévní mozkové příhodě
- Cenobamát v léčbě farmakorezistentní fokální epilepsie
- Standardizované a pokročilé techniky MR v diagnostice dětských nádorů mozku