#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dietary approaches specific to patients with multiple sclerosis


Authors: K. Vodehnalová;  E. Kubala;  Havrdová;  D. Horáková
Authors‘ workplace: Neurologická klinika a Centrum klinických neurověd 1. LF UK a VFN v Praze
Published in: Cesk Slov Neurol N 2023; 86(1): 25-30
Category: Review Article
doi: https://doi.org/10.48095/cccsnn202325

Overview

Interest in non-pharmacological treatment of MS is considerable among doctors and patients. In the light of new scientific findings, dietary intervention appears to be a promising adjunctive treatment to established pharmacotherapy. In patients with MS, the diet can lead to suppression of autoimmune inflammation, neurodegeneration and support of remyelination. Several possible specific nutritional directions are now being discussed in professional and patient circles. Thus, it is necessary to focus on the evidence behind them, so that the physician can report to the patient the possible benefits and risks associated with them. At first glance, different dietary approaches in the form of a low-fat or high-fat diet may have similar benefits on the course of MS. However, in the overall approach to the diet of patients with MS, we should continue to adhere to the rules of a rational diet with an emphasis on a high intake of vegetables, fruits and healthy fats.

Keywords:

Diet – Multiple sclerosis – Swank – Wahls – ketogenic


Sources

1. Hadgkiss EJ, Jelinek GA, Weiland TJ et al. The association of diet with quality of life, disability, and relapse rate in an international sample of people with multiple sclerosis. Nutr Neurosci 2015; 18 (3): 125–136. doi: 10.1179/1476830514Y.0000000117.

2. Fitzgerald KC, Tyry T, Salter A et al. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology 2018; 90 (1): e1–e11. doi: 10.1212/WNL.0000000000004768.

3. Leong EM, Semple SJ, Angley M et al. Complementary and alternative medicines and dietary interventions in multiple sclerosis: what is being used in South Australia and why? Complement Ther Med 2009; 17 (4): 216–223. doi: 10.1016/j.ctim.2009.03.001.

4. Katz Sand I. The role of diet in multiple sclerosis: mechanistic connections and current evidence. Curr Nutr Rep 2018; 7 (3): 150–160. doi: 10.1007/s13668-018-0236-z.

5. Schuh C, Wimmer I, Hametner S et al. Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models. Acta Neuropathol 2014; 128 (2): 247–266. doi: 10.1007/s00401-014-1263-5.

6. Langley MR, Triplet EM, Scarisbrick IA. Dietary influence on central nervous system myelin production, injury, and regeneration. Biochim Biophys Acta Mol Basis Dis 2020; 1866 (7): 165779. doi: 10.1016/j.bbadis.2020.165779.

7. Riccio P, Rossano R, Liuzzi GM. May diet and dietary supplements improve the wellness of multiple sclerosis patients? A molecular approach. Autoimmune Dis 2011; 2010: 249842. doi: 10.4061/2010/249842.

8. Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 2004; 251 (3): 261–268. doi: 10.1007/s00415-004-0348-9.

9. Waslo C, Bourdette D, Gray N et al. Lipoic acid and other antioxidants as therapies for multiple sclerosis. Curr Treat Options Neurol 2019; 21 (6): 26. doi: 10.1007/s11940-019-0566-1.

10. Storoni M, Plant GT. The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis. Mult Scler Int 2015; 2015: 681289. doi: 10.1155/2015/681289.

11. Carlson NG, Rose JW. Antioxidants in multiple sclerosis: do they have a role in therapy? CNS Drugs 2006; 20 (6): 433–441. doi: 10.2165/00023210-200620060-00001.

12. Jarrett SG, Milder JB, Liang LP et al. The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 2008; 106 (3): 1044–1051. doi: 10.1111/j.1471-4159.2008.05460.x.

13. Tremlett H, Fadrosh DW, Faruqi AA et al. Gut microbio­ta in early pediatric multiple sclerosis: a case-control study. Eur J Neurol 2016; 23 (8): 1308–1321. doi: 10.1111/ene.13026.

14. Esposito S, Bonavita S, Sparaco M et al. The role of diet in multiple sclerosis: a review. Nutr Neurosci 2018; 21 (6): 377–390. doi: 10.1080/1028415X.2017.1303016.

15. Turnbaugh PJ, Ridaura VK, Faith JJ et al. The effect of diet on the human gut microbio­me: a metagenomic analysis in humanized gnotobio­tic mice. Sci Transl Med 2009; 1 (6): 6ra14. doi: 10.1126/scitranslmed.3000322.

16. Schepici G, Silvestro S, Bramanti P et al. The gut microbio­ta in multiple sclerosis: an overview of clinical trials. Cell Transplant 2019; 28 (12): 1507–1527. doi: 10.1177/0963689719873890.

17. Furusawa Y, Obata Y, Fukuda S et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504 (7480): 446–450. doi: 10.1038/nature12721.

18. Cignarella F, Cantoni C, Ghezzi L et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbio­ta. Cell Metab 2018; 27 (6): 1222–1235.e6. doi: 10.1016/j.cmet.2018.05.006.

19. Hedman AM, van Haren NEM, Schnack HG et al. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 2012; 33 (8): 1987–2002. doi: 10.1002/hbm. 21334.

20. Zivadinov R, Jakimovski D, Gandhi S et al. Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Expert Rev Neurother 2016; 16 (7): 777–793. doi: 10.1080/14737175.2016.1181543.

21. Mao P, Reddy PH. Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta 2010; 1802 (1): 66–79. doi: 10.1016/j.bbadis.2009.07.002.

22. Rothhammer V, Mascanfroni ID, Bunse L et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 2016; 22 (6): 586–597. doi: 10.1038/nm.4106.

23. Xue Z, Li D, Yu W et al. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8 (4): 1414–1437. doi: 10.1039/c6fo01810f.

24. Joseph JA, Shukitt-Hale B, Denisova NA et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 1999; 19 (18): 8114–8121. doi: 10.1523/JNEUROSCI.19-18-08114.1999.

25. Xin J, Feinstein DL, Hejna MJ et al. Beneficial effects of blueberries in experimental autoimmune encephalomyelitis. J Agric Food Chem 2012; 60 (23): 5743–5748. doi: 10.1021/jf203611t.

26. Rinholm JE, Hamilton NB, Kessaris N et al. Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 2011; 31 (2): 538–548. doi: 10.1523/JNEUROSCI.3516-10.2011.

27. Castellano CA, Nugent S, Paquet N et al. Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild Alzheimer‘s disease dementia. J Alzheimers Dis 2015; 43 (4): 1343–1353. doi: 10.3233/JAD-141074.

28. Kindred JH, Tuulari JJ, Bucci M et al. Walking speed and brain glucose uptake are uncoupled in patients with multiple sclerosis. Front Hum Neurosci 2015; 9: 84. doi: 10.3389/fnhum.2015.00084.

29. Kuhlmann T, Miron V, Cui Q et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 2008; 131 (Pt 7): 1749–1758. doi: 10.1093/brain/awn 096.

30. Bai M, Wang Y, Han R et al. Intermittent caloric restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis. J Nutr Biochem 2021; 87: 108493. doi: 10.1016/j.jnutbio­.2020.108 493.

31. Román GC, Jackson RE, Gadhia R et al. Mediterranean diet: the role of long-chain omega-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probio­tics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol (Paris) 2019; 175 (10): 724–741. doi: 10.1016/j.neurol.2019.08.005.

32. Bohlouli J, Namjoo I, Borzoo-Isfahani M et al. Modified Mediterranean diet v. traditional Iranian diet: efficacy of dietary interventions on dietary inflammatory index score, fatigue severity and disability in multiple sclerosis patients. Br J Nutr 2022; 128 (7): 1274–1284. doi: 10.1017/S000711452100307X.

33. Esposito S, Sparaco M, Maniscalco GT et al. Lifestyle and Mediterranean diet adherence in a cohort of Southern Italian patients with multiple sclerosis. Mult Scler Relat Disord 2021; 47: 102636. doi: 10.1016/j.msard.2020.102636.

34. Swank RL. Multiple sclerosis; a correlation of its incidence with dietary fat. Am J Med Sci 1950; 220 (4): 421–430.

35. Swank RL, Goodwin J. Review of MS patient survival on a Swank low saturated fat diet. Nutrition 2003; 19 (2): 161–162. doi: 10.1016/s0899-9007 (02) 00851-1.

36. Swank RL, Grimsgaard A. Multiple sclerosis: the lipid relationship. Am J Clin Nutr 1988; 48 (6): 1387–1393. doi: 10.1093/ajcn/48.6.1387.

37. Noseworthy JH, Lucchinetti C, Rodriguez M et al. Multiple sclerosis. N Engl J Med 2000; 343 (13): 938–952. doi: 10.1056/NEJM200009283431307.

38. Overcoming MS. Our history & context. [online]. Dostupné z: https: //overcomingms.org/about-us/our-history-context.

39. Marck CH, De Livera AM, Brown CR et al. Health outcomes and adherence to a healthy lifestyle after a multimodal intervention in people with multiple sclerosis: three year follow-up. PLoS One 2018; 13 (5): e0197759. doi: 10.1371/journal.pone.0197759.

40. Dr. McDougall. Our story. [online]. Dostupné z: https: //www.drmcdougall.com/our-story/.

41. McDougall J, Thomas LE, McDoufall C et al. Effects of 7 days on an ad libitum low-fat vegan diet: the McDougall Program cohort. Nutr J 2014; 13: 99. doi: 10.1186/1475-2891-13-99.

42. Yadav V, Marracci G, Kim E et al. Low-fat, plant-based diet in multiple sclerosis: a randomized controlled trial. Mult Scler Relat Disord 2016; 9: 80–90. doi: 10.1016/j.msard.2016.07.001.

43. Adam-Perrot A, Clifton P, Brouns F. Low-carbohydrate diets: nutritional and physiological aspects. Obes Rev 2006; 7 (1): 49–58. doi: 10.1111/j.1467-789X.2006.002 22.x.

44. Sourbron J, Klinkenberg S, van Kuijk SMJ et al. Ketogenic diet for the treatment of pediatric epilepsy: review and meta-analysis. Childs Nerv Syst 2020; 36 (6): 1099–1109. doi: 10.1007/s00381-020-04578-7.

45. Swidsinski A, Dörffel Y, Loening-Baucke V et al. Reduced mass and diversity of the colonic microbio­me in patients with multiple sclerosis and their improvement with ketogenic diet. Front Microbio­l 2017; 8: 1141. doi: 10.3389/fmicb.2017.01141.

46. Brenton JN, Lehner-Gulotta D, Woolbright E et al. Phase II study of ketogenic diets in relapsing multiple sclerosis: safety, tolerability and potential clinical benefits. J Neurol Neurosurg Psychiatry 2022; 93 (6): 637–644. doi: 10.1136/jnnp-2022-329074.

47. Wahls T. The Wahls protocol: a radical new way to treat all chronic autoimmune conditions using paleo principles. Baltimore: Penguin Publishing Group 2014.

48. Bisht B, Darling WG, Torage Shivapour E et al. Multimodal intervention improves fatigue and quality of life in subjects with progressive multiple sclerosis: a pilot study. Degener Neurol Neuromuscul Dis 2015; 5: 19–35. doi: 10.2147/DNND.S76523.

49. Irish AK, Erickson CM, Wahls TL et al. Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: a pilot study. Degener Neurol Neuromuscul Dis 2017; 7: 1–18. doi: 10.2147/DNND.S116949.

50. Lee JE, Bisht B, Hall MJ et al. A multimodal, nonpharmacologic intervention improves mood and cognitive function in people with multiple sclerosis. J Am Coll Nutr 2017; 36 (3): 150–168. doi: 10.1080/07315724.2016.1255160.

51. Fellows Maxwell K, Wahls T, Browne RW et al. Lipid profile is associated with decreased fatigue in individuals with progressive multiple sclerosis following a diet- -based intervention: results from a pilot study. PLoS One 2019; 14 (6): e0218075. doi: 10.1371/journal.pone.0218075.

52. Wahls TL, Reese D, Kaplan D et al. Rehabilitation with neuromuscular electrical stimulation leads to functional gains in ambulation in patients with secondary progressive and primary progressive multiple sclerosis: a case series report. J Altern Complement Med 2010; 16 (12): 1343–1349. doi: 10.1089/acm.2010.0080.

53. Wahls TL, Titcomb TJ, Bisht B et al. Impact of the Swank and Wahls elimination dietary interventions on fatigue and quality of life in relapsing-remitting multiple sclerosis: the WAVES randomized parallel-arm clinical trial. Mult Scler J Exp Transl Clin 2021; 7 (3): 20552173211035399. doi: 10.1177/20552173211035399.

54. Titcomb TJ, Brooks L, Smith KL et al. Change in micronutrient intake among people with relapsing-remitting multiple sclerosis adapting the Swank and Wahls diets: an analysis of weighed food records. Nutrients 2021; 13 (10): 3507. doi: 10.3390/nu13103507.

55. Schreiner TG, Genes TM. Obesity and multiple sclerosis – a multifaceted association. J Clin Med 2021; 10 (12): 2689. doi: 10.3390/jcm10122689.

56. Moszak M, Szulinska M, Bogdanski P. You are what you eat – the relationship between diet, microbio­ta, and metabolic disorders – a review. Nutrients 2020; 12 (4): 1096. doi: 10.3390/nu12041096.

57. Hucke S, Wiendl H, Klotz L. Implications of dietary salt intake for multiple sclerosis pathogenesis. Mult Scler 2016; 22 (2): 133–139. doi: 10.1177/1352458515609431.

58. Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 2018; 132: 41–48. doi: 10.1016/j.plefa.2018.03.004.

59. Matveeva O, Bogie JFJ, Hendriks JJA et al. Western lifestyle and immunopathology of multiple sclerosis. Ann N Y Acad Sci 2018; 1417 (1): 71–86. doi: 10.1111/ nyas.13583.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 1

2023 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#