Limb girdle muscular dystrophies
Authors:
L. Mensová; D. Baumgartner; V. Potočková; R. Mazanec
Authors‘ workplace:
Neurologická klinika 2. LF UK a FN Motol, Praha
Published in:
Cesk Slov Neurol N 2022; 85(6): 435-448
Category:
Minimonography
doi:
https://doi.org/10.48095/cccsnn2022435
Overview
Termín pletencové svalové dystrofie (limb girdle muscular dystrophy; LGMD) byl poprvé použit v roce 1954 J. N. Waltonem a F. Nattrassem. Autoři se jím snažili vymezit další klinickou jednotku vedle častější X-vázané Duchennovy muskulární dystrofie a autozomálně dominantně dědičných myotonické a facioskapulohumerální svalové dystrofie (FSHD). V dalších letech přibývalo poznatků a publikací popisujících jednotlivé LGMD nejen s autozomálně recesivním, ale také dominantním typem dědičnosti. Bylo zjevné, že LGMD nebude jedním onemocněním, nýbrž zastřešujícím termínem pro celou skupinu velmi variabilních klinických jednotek s různým genetickým i patofyziologickým podkladem. Prudký rozvoj molekulární genetiky (zejména technik sekvenování nové generace) vedl k objevení velkého množství nových asociovaných genů. Nová klasifikace z roku 2018 definuje více než 30 subtypů LGMD a je koncipována s předpokladem, že i v budoucnosti budou přibývat další. Tato publikace přináší stručný přehled dostupných informací o LGMD a jejich epidemiologii, patogenezi, fenotypických znacích vč. popisu nejčastějších klinických jednotek, diagnostice, diferenciální diagnostice a dostupných a vyvíjených možnostech terapie.
Keywords:
limb girdle muscular dystrophies – myopathies
Sources
1. Walton NJ, Nattrass FJ. On the classification, natural history and treatment of the myopathies. Brain 1954; 77 (2): 169–231. doi: 10.1093/brain/77.2.169.
2. Bushby KMD. Diagnostic criteria for the limb-girdle muscular dystrophies: report of the ENMC consortium on limbgirdle dystrophies. Neuromuscular Disord 1995; 5 (1): 71–74. doi: 10.1016/0960-8966 (93) e0006- g.
3. Servián‑Morilla E, Takeuchi H, Lee TV et al. A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol Med 2016; 8 (11): 1289–1309. doi: 10.15252/emmm.201505815.
4. Straub V, Murphy A, Udd B et al. 229th ENMC international workshop: limb girdle muscular dystrophies – Nomenclature and reformed classification Naarden, the Netherlands, 17–19 March 2017. Neuromuscular Disord 2018; 28 (8): 702–710. doi: 10.1016/j.nmd.2018.05.007.
5. van der Kooi AJ, Barth PG, Busch HF et al. The clinical spectrum of limb girdle muscular dystrophy. A survey in the Neatherlands. Brain 1996; 119 (Pt 5): 1471–1480. doi: 10.1093/brain/119.5.1471.
6. Norwood FLM, Harling C, Chinnery PF et al. Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain 2009; 132 (Pt 11): 3175–3186. doi: 10.1093/brain/awp236.
7. Narayanaswami P, Weiss M, Selcen D et al. Evidence-based guideline summary. Neurology 2014; 83 (16): 1453–1463. doi: 10.1212/wnl.0000000000000892.
8. Mojbafan M, Bahmani R, Bagheri SD et al. Mutational spectrum of autosomal recessive limb-girdle muscular dystrophies in a cohort of 112 Iranian patients and reporting of a possible founder effect. Orphanet J Rare Dis 2020; 15 (1): 14. doi: 10.1186/s13023-020-1296-x.
9. Polavarapu K, Mathur A, Joshi A et al. A founder mutation in the GMPPB gene [c.1000G > A (p.Asp334Asn) ] causes a mild form of limb-girdle muscular dystrophy/congenital myasthenic syndrome (LGMD/CMS) in South Indian patients. Neurogenetics 2021; 22 (4): 271–285. doi: 10.1007/s10048-021-00658-1.
10. Bushby K. Report on the 12th ENMC sponsored international workshop – the “limb-girdle” muscular dystrophies. Neuromuscular Disord 1992; 2 (1): 3–5. doi: 10.1016/0960-8966 (92) 90019-3.
11. Angelini C, Giaretta L, Marozzo R. An update on diag- nostic options and considerations in limb-girdle dystrophies. Expert Rev Neurother 2018; 18 (9): 693–703. doi: 10.1080/14737175.2018.1508997.
12. Willis TA, Hollingsworth KG, Coombs A et al. Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2I: a multinational cross-sectional study. PLoS One 2014; 9 (2): e90377. doi: 10.1371/journal.pone.0090377.
13. Sarkozy A, Hicks D, Hudson J et al. ANO5 gene analysis in a large cohort of patients with anoctaminopathy: confirmation of male prevalence and high occurrence of the common exon 5 gene mutation. Hum Mutat 2013; 34 (8): 1111–1118. doi: 10.1002/humu.22342.
14. Stehlíková K, Skálová D, Zídková J et al. Autosomal recessive limb-girdle muscular dystrophies in the Czech Republic. BMC Neurol 2014; 14: 154. doi: 10.1186/s12883-014-0154-7.
15. Richard I, Roudaut C, Saenz A et al. Calpainopathy – a survey of mutations and polymorphisms. Am J Hum Genetics 1999; 64 (6): 1524–1540. doi: 10.1086/302426.
16. Murphy AP, Straub V. The classification, natural history and treatment of the limb girdle muscular dystrophies. J Neuromuscul Dis 2015; 2 (2): S7–S19. doi: 10.3233/jnd-150105.
17. Hack AA, Groh ME, McNally EM. Sarcoglycans in muscular dystrophy. Microsc Res Tech 2000; 48 (3–4): 167–180. doi: 10.1002/ (SICI) 1097-0029 (20000201/15) 48: 3/4<167:: AID-JEMT5>3.0.CO; 2-T.
18. Zrelski MM, Kustermann M, Winter L. Muscle-related plectinopathies. Cells 2021; 10 (9): 2480. doi: 10.3390/cells10092480.
19. Liu J, Aoki M, Illa I et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 1998; 20 (1): 31–36. doi: 10.1038/1682.
20. Liewluck T, Milone M. Untangling the complexity of limb‑girdle muscular dystrophies. Muscle Nerve 2018; 58 (2): 167–177. doi: 10.1002/mus.26077.
21. Kawahara G, Guyon JR, Nakamura Y et al. Zebrafish models for human FKRP muscular dystrophies. Hum Mol Genet 2010; 19 (4): 623–633. doi: 10.1093/hmg/ddp528.
22. Herrmann R, Straub V, Blank M et al. Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum Mol Genet 2000; 9 (15): 2335–2340. doi: 10.1093/oxfordjournals.hmg.a018926.
23. Alderton JM, Steinhardt RA. How calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. Trends Cardiovasc Med 2000; 10 (6): 268–272. doi: 10.1016/s1050-1738 (00) 00075-x.
24. Fanin M, Nascimbeni AC, Fulizio L et al. Loss of calpain-3 autocatalytic activity in LGMD2A patients with normal protein expression. Am J Pathol 2003; 163 (5): 1929–1936. doi: 10.1016/s0002-9440 (10) 63551-1.
25. Wallace GQ, McNally EM. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu Rev Physiol 2009; 71: 37–57. doi: 10.1146/annurev.physiol.010908.163216.
26. Darras BT, Nordli DR, Shefner JM. Limb-girdle muscular dystrophy. [online]. Available from URL: https: //www.uptodate.com/contents/limb-girdle-muscular-dystrophy.
27. Paradas C, Llauger J, Diaz-Manera J et al. Redefining dysferlinopathy phenotypes based on clinical findings and muscle imaging studies. Neurology 2010; 75 (4): 316–323. doi: 10.1212/wnl.0b013e3181ea1564.
28. Magri F, Bo RD, D’Angelo MG et al. Frequency and characterisation of anoctamin 5 mutations in a cohort of Italian limb-girdle muscular dystrophy patients. Neuromuscul Disord 2012; 22 (11): 934–943. doi: 10.1016/j.nmd.2012.05.001.
29. Bushby K. Limb-girdle muscular dystrophies. [online]. Dostupné z: https: //rarediseases.org/rare-dis- eases/limb-girdle-muscular-dystrophies/.
30. Parmová O, Mensová L, Voháňka S et al. Celonárodní screening Pompeho nemoci u pacientů s nespecifikovanou svalovou slabostí, hyperCKémií a respirační insuficiencí. Neurol Praxi 2020; 21 (Suppl B): 3–9 doi: 10.36290/neu.2020.064.
31. Kishnani PS, Steiner RD, Bali D et al. Pompe disease diagnosis and management guideline. Genet Med 2006; 8 (5): 267–288. doi: 10.1097/01.gim.0000218152.87434.f3.
32. Mazanec R, Mensová L, Baumgartner D et al. Diagnostický algoritmus u svalových dystrofií. Neurol Praxi 2019; 20 (3): 190–194 doi: 10.36290/neu.2019.017.
33. Joyce NC, Oskarsson B, Jin L-W. Muscle biopsy evaluation in neuromuscular disorders. Phys Med Rehabil Clin N Am 2012; 23 (3): 609–631. doi: 10.1016/j.pmr.2012.06.006.
34. Mercuri E, Bushby K, Ricci E et al. Muscle MRI findings in patients with limb girdle muscular dystrophy with calpain 3 deficiency (LGMD2A) and early contractures. Neuromuscular Disord 2005; 15 (2): 164–171. doi: 10.1016/j.nmd.2004.10.008.
35. Mercuri E, Pichiecchio A, Allsop J et al. Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging 2007; 25 (2): 433–440. doi: 10.1002/jmri.20804.
36. Zaidman CM, Holland MR, Anderson CC et al. Calibrated quantitative ultrasound imaging of skeletal muscle using backscatter analysis. Muscle Nerve 2008; 38 (1): 893–898. doi: 10.1002/mus.21052.
37. Fajkusová L, Zídková J. Pletencové svalové dystrofie. Neurol Praxi 2021; 22 (2): 100–103. doi: 10.36290/neu. 2020.107.
38. Angelini C. LGMD. Identification, description and classification. Acta Myol 2020; 39 (4): 207–217. doi: 10.36185/2532-1900-024.
39. Quick S, Schaefer J, Waessnig N et al. Evaluation of heart involvement in calpainopathy (LGMD2A) using cardiovascular magnetic resonance. Muscle Nerve 2015; 52 (4): 661–663. doi: 10.1002/mus.24717.
40. Campbell DEMP, Campbell KP. Dystrophin-glycoprotein comples: post-translational processing and dystroglycan function. J Biol Chem 2003; 278 (18): 15457–15460. doi: 10.1074/jbc.r200031200.
41. Mercuri E, Brockington M, Straub V et al. Phenotypic spectrum associated with mutations in the fukutin‑related protein gene. Ann Neurol 2003; 53 (4): 537–542. doi: 10.1002/ana.10559.
42. Wicklund MP, Kissel JT. The limb-girdle muscular dystrophies. Neurol Clin 2014; 32 (3): 729–749. doi: 10.1016/ j.ncl.2014.04.005.
43. Matsumura K, Tomé FMS, Collin H et al. Deficiency of the 50K dystrophin-associated glycoprotein in severe childhood autosomal recessive muscular dystrophy. Nature 1992; 359 (6393): 320–322. doi: 10.1038/359320a0.
44. Tarakci H, Berger J. The sarcoglycan complex in skeletal muscle. Front Biosci 2016; 21 (4): 744–756. doi: 10.2741/4418.
45. Nallamilli BRR, Chakravorty S, Kesari A et al. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann Clin Transl Neurol 2018; 5 (12): 1574–1587. doi: 10.1002/acn3.649.
46. Wicklund MP. The limb-girdle muscular dystrophies. Continuum 2019; 25 (6): 1599–1618. doi: 10.1212/ con.0000000000000809.
47. Kirschner J, Lochmüller H. Sarcoglycanopathies. Handb Clin Neurol 2011; 101: 41–46. doi: 10.1016/b978-0-08-045031-5.00003-7.
48. Cagliani R, Comi GP, Tancredi L et al. Primary beta-sarcoglycanopathy manifesting as recurrent exercise-induced myoglobinuria. Neuromuscul Disord 2001; 11 (4): 389–394. doi: 10.1016/s0960-8966 (00) 00207-8.
49. Mongini T, Doriguzzi C, Bosone I et al. Alpha-sarcoglycan deficiency featuring exercise intolerance and myoglobinuria. Neuropediatrics 2002; 33 (2): 109–111. doi: 10.1055/s-2002-32374.
50. Pena L, Kim K, Charrow J. Episodic myoglobinuria in a primary gamma-sarcoglycanopathy. Neuromuscul Disord 2010; 20 (5): 337–339. doi: 10.1016/j.nmd.2010.02.015.
51. Angelini C, Fanin M, Menegazzo E et al. Homozygous a‑sarcoglycan mutation in two siblings: one asymptomatic and one steroid‑responsive mild limb-girdle muscular dystrophy patient. Muscle Nerve 1998; 21 (6): 769–775. doi: 10.1002/ (sici) 1097-4598 (199806) 21: 6<769:: aid-mus9>3.0.co; 2-5.
52. Fanin M, Nascimbeni AC, Aurino S et al. Frequency of LGMD gene mutations in Italian patients with distinct clinical phenotypes. Neurology 2009; 72 (16): 1432–1435. doi: 10.1212/wnl.0b013e3181a1885e.
53. Fanin M, Duggan DJ, Mostacciuolo ML et al. Genetic epidemiology of muscular dystrophies resulting from sarcoglycan gene mutations. J Med Genet 1997; 34 (12): 973–977. doi: 10.1136/jmg.34.12.973.
54. Lancioni A, Rotundo IL, Kobayashi YM et al. Combined deficiency of alpha and epsilon sarcoglycan disrupts the cardiac dystrophin complex. Hum Mol Genet 2011; 20 (23): 4644–4654. doi: 10.1093/hmg/ddr398.
55. Tasca G, Monforte M, Díaz-Manera J et al. MRI in sarcoglycanopathies: a large international cohort study. J Neurology Neurosurg Psychiatry 2018; 89 (1): 72–77. doi: 10.1136/jnnp-2017-316736.
56. Lodi R, Muntoni F, Taylor J et al. Correlative MR imaging and 31P-MR spectroscopy study in sarcoglycan deficient limb girdle muscular dystrophy. Neuromuscul Disord 1997; 7 (8): 505–511. doi: 10.1016/s0960-8966 (97) 00108-9.
57. Penttilä S, Palmio J, Suominen T et al. Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5. Neurology 2012; 78 (12): 897–903. doi: 10.1212/wnl.0b013e31824c4682.
58. Vázquez J, Lefeuvre C, Escobar RE et al. Phenotypic spectrum of myopathies with recessive anoctamin-5 mutations. J Neuromuscul Dis 2020; 7 (4): 443–451. doi: 10.3233/jnd-200515.
59. Christiansen J, Güttsches A-K, Schara-Schmidt U et al. ANO5-related muscle diseases: from clinics and genetics to pathology and research strategies. Genes Dis 2022; 9 (6): 1506–1520. doi: 10.1016/j.gendis.2022.01.001.
60. Vinit J, Samson M, Gaultier J-B et al. Dysferlin deficiency treated like refractory polymyositis. Clin Rheumatol 2009; 29 (1): 103–106. doi: 10.1007/s10067-009-1273-1.
61. Barresi R. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies. Skelet Muscle 2011; 1 (1): 24. doi: 10.1186/2044-5040-1-24.
62. Rowin J, Meriggioli MN, Cochran EJ et al. Prominent inflammatory changes on muscle biopsy in patients with Miyoshi myopathy. Neuromuscular Disord 1999; 9 (6–7): 417–420. doi: 10.1016/s0960-8966 (99) 00041-3.
63. Rosenfeld A. Spinal muscular atrophy. [online]. Available from URL: https: //emedicine.medscape.com/article/1181436-overview.
64. Neuromuskulární sekce České neurologické společnosti. [online]. Dostupné z URL: https: //www.neuromuskularni-sekce.cz/
65. Sveen M-L, Jeppesen TD, Hauerslev S et al. Endurance training. Neurology 2007; 68 (1): 59–61. doi: 10.1212/01.wnl.0000250358.32199.24.
66. Sveen M, Andersen SP, Ingelsrud LH et al. Resistance training in patients with limb‑girdle and becker muscular dystrophies. Muscle Nerve 2013; 47 (2): 163–169. doi: 10.1002/mus.23491.
67. Harvey LA, Katalinic OM, Herbert RD et al. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev 2017; 1 (1): CD007455. doi: 10.1002/14651858.cd007455.pub3.
68. Feingold B, Mahle WT, Auerbach S et al. Management of cardiac involvement associated with neuromuscular diseases: a scientific statement from the American Heart Association. Circulation 2017; 136 (13): e200–231. doi: 10.1161/cir.0000000000000526.
69. Norwood F, Visser M de, Eymard B et al. EFNS guideline on diagnosis and management of limb girdle muscular dystrophies. Eur J Neurol 2007; 14 (12): 1305–1312. doi: 10.1111/j.1468-1331.2007.01979.x.
70. Margeta M, Connolly AM, Winder TL et al. Cardiac pathology exceeds skeletal muscle pathology in two cases of limb‑girdle muscular dystrophy type 2I. Muscle Nerve 2009; 40 (5): 883–889. doi: 10.1002/mus. 21432.
71. D’Amico A, Petrini S, Parisi F et al. Heart transplantation in a child with LGMD2I presenting as isolated dilated cardiomyopathy. Neuromuscul Disord 2008; 18 (2): 153–155. doi: 10.1016/j.nmd.2007.09.013.
72. Nikhanj A, Yogasundaram H, Nichols BM et al. Cardiac intervention improves heart disease and clinical outcomes in patients with muscular dystrophy in a multidisciplinary care setting. J Am Heart Assoc 2020; 9 (2): e014004. doi: 10.1161/jaha.119.014004.
73. Simonds AK. Recent advances in respiratory care for neuromuscular disease. Chest 2006; 130 (6): 1879–1886. doi: 10.1378/chest.130.6.1879.
74. Bartoli M, Roudaut C, Martin S et al. Safety and efficacy of AAV-mediated calpain 3 gene transfer in a mouse model of limb-girdle muscular dystrophy type 2A. Mol Ther 2006; 13 (2): 250–259. doi: 10.1016/j.ymthe.2005.09.017.
75. Griffin DA, Pozsgai ER, Heller KN et al. Preclinical syste-mic delivery of adeno-associated a-sarcoglycan gene transfer for limb-girdle muscular dystrophy. Hum Gene Ther 2021; 32 (7–8): 390–404. doi: 10.1089/hum.2019.199.
76. Israeli D, Cosette J, Corre G et al. An AAV-SGCG dose-response study in a g-sarcoglycanopathy mouse model in the context of mechanical stress. Mol Ther Methods Clin Dev 2019; 13: 494–502. doi: 10.1016/ j.omtm.2019.04.007.
77. Lostal W, Bartoli M, Bourg N et al. Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum Mol Genet 2010; 19 (10): 1897–1907. doi: 10.1093/hmg/ddq065.
78. Xu L, Lu PJ, Wang C-H et al. Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of a-dystroglycan and improves muscle functions. Mol Ther 2013; 21 (10): 1832–1840. doi: 10.1038/mt.2013.156.
79. Vannoy CH, Leroy V, Lu QL. Dose-dependent effects of FKRP gene-replacement therapy on functional rescue and longevity in dystrophic mice. Mol Ther Methods Clin Dev 2018; 11: 106–120. doi: 10.1016/j.omtm.2018.10.004.
80. Birnkrant DJ, Bushby K, Bann CM et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018; 17 (3): 251–267. doi: 10.1016/s1474-4422 (18) 30024-3.
81. Wong-Kisiel LC, Kuntz NL. Two siblings with limb-girdle muscular dystrophy type 2E responsive to deflazacort. Neuromuscular Disord 2010; 20 (2): 122–124. doi: 10.1016/j.nmd.2009.11.005.
82. Bogdanovich S, McNally EM, Khurana TS. Myostatin blockade improves function but not histopathology in a murine model of limb‑girdle muscular dystrophy 2C. Muscle Nerve 2008; 37 (3): 308–316. doi: 10.1002/mus.20920.
83. Mariot V, Joubert R, Hourdé C et al. Downregulation of myostatin pathway in neuromuscular diseases may explain challenges of anti-myostatin therapeutic approaches. Nat Commun 2017; 8 (1): 1859. doi: 10.1038/s41467-017-01486-4.
84. Piñol-Jurado P, Suárez-Calvet X, Fernández-Simón E et al. Nintedanib decreases muscle fibrosis and improves muscle function in a murine model of dystrophinopathy. Cell Death Dis 2018; 9 (7): 776. doi: 10.1038/s41419-018-0792-6.
85. REaDY. [online]. Dostupné z URL: https: //ready.registry.cz/.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2022 Issue 6
Most read in this issue
- Guidelines for developmental dysphasia – version 2022
- Validation study and introduction of the new TEPO sentence comprehension test for children aged 3–8 years
- Limb girdle muscular dystrophies
- New pharmacological options in the treatment of Alzheimer‘s disease