Basic principles of anaesthetic care for intraoperative transcranial motor evoked potentials monitoring
Authors:
J. Hudec 1,2; M. Kosinová 2,3; Martin Němec 4
Authors‘ workplace:
Klinika anesteziologie, resuscitace a intenzivní medicíny LF MU a FN Brno
1; Ústav simulační medicíny, LF MU, Brno
2; Klinika dětské anesteziologie a resuscitace LF MU a FN Brno
3; Neurologická klinika LF MU a FN Brno
4
Published in:
Cesk Slov Neurol N 2022; 85(6): 457-461
Category:
Review Article
doi:
https://doi.org/10.48095/cccsnn2022457
Overview
Intraoperative evoked potentials monitoring is an essential neurophysiological modality used in surgeries with a risk of CNS functional integrity damage. Transcranial motor evoked potentials (MEPs) are one of the most important modalities. Trained surgeons can effectively monitor MEPs under the supervision of a neurophysiologist. Effective cooperation among all operating team members, anaesthesiologists, and neurophysiologist is essential for proper neuromonitoring. The aim of this article is to comprehensively summarize all possible factors that can affect the quality of intraoperative MEPs monitoring. The authors focus on the effect of anaesthetic drugs and anaesthetic management, including anaesthesia maintenance or non-pharmacological factors, which can affect the MEPs’ reproducibility. This review provides essential information to all members of a perioperative team that take care for patients during surgery with MEPs monitoring. This information can facilitate cooperation and streamline communication across all related disciplines.
Keywords:
motor evoked potentials – general anaesthesia – neurophysiological monitoring – total intravenous anaesthesia
Sources
1. Daniel JW, Botelho RV, Milano JB et al. Intraoperative neurophysiological monitoring in spine surgery: a systematic review and meta-analysis. Spine 2018; 43 (16): 1154–1160. doi: 10.1097/BRS.0000000000002575.
2. Gruenbaum BF, Gruenbaum SE. Neurophysiological monitoring during neurosurgery: anesthetic considerations based on outcome evidence. Curr Opin Anaesthesiol 2019; 32 (5): 580–584. doi: 10.1097/ACO.0000000 000000753.
3. Jellish WS. Motor-evoked potentials are an important determinant of spinal cord ischemic injury during aortic arch surgery. But can they be used exclusively? J Cardiothorac Vasc Anesth 2019; 33 (7): 1843–1844. doi: 10.1053/j.jvca.2019.01.044.
4. Strike SA, Hassanzadeh H, Jain A et al. Intraoperative neuromonitoring in pediatric and adult spine deformity surgery. Clin Spine Surg 2017; 30 (9): E1174–E1181. doi: 10.1097/BSD.0000000000000388.
5. Padberg AM, Bridwell KH. Spinal cord monitoring: current state of the art. Orthop Clin North Am 1999; 30 (3): 407–433, viii. doi: 10.1016/s0030-5898 (05) 70095-x.
6. Sahinovic MM, Gadella MC, Shils J et al. Anesthesia and intraoperative neurophysiological spinal cord monitoring. Curr Opin Anaesthesiol 2021; 34 (5): 590–596. doi: 10.1097/ACO.0000000000001044.
7. Nunes RR, Bersot CDA, Garritano JG. Intraoperative neurophysiological monitoring in neuroanesthesia. Curr Opin Anaesthesiol 2018; 31 (5): 532–538. doi: 10.1097/ACO.0000000000000645.
8. Christian CK, Gustafson ML, Roth EM et al. A prospective study of patient safety in the operating room. Surgery 2006; 139 (2): 159–173. doi: 10.1016/j.surg.2005.07.037.
9. Etherington C, Wu M, Cheng-Boivin O et al. Interprofessional communication in the operating room: a narrative review to advance research and practice. Can J Anaesth 2019; 66 (10): 1251–1260. doi: 10.1007/s12630-019-01413-9.
10. Tsutsui S, Yamada H. Basic principles and recent trends of transcranial motor evoked potentials in intraoperative neurophysiologic monitoring. Neurol Med Chir (Tokyo) 2016; 56 (8): 451–456. doi: 10.2176/nmc.ra.2015-0307.
11. Burbridge MA, Nguyen V, Min JG et al. Intraoperative transcranial motor-evoked potential stimulation does not seem to cause seizures. J Neurosurg Anesthesiol 2021; 33 (4): 351–355. doi: 10.1097/ANA.0000000000000671.
12. Burbridge MA, Nguyen V, Min JG et al. Intraoperative transcranial motor-evoked potential stimulation does not seem to cause seizures. J Neurosurg Anesthesiol 2021; 33 (4): 351–355. doi: 10.1097/ANA.0000000000000671.
13. Nakagawa Y, Tamaki T, Yamada H et al. Discrepancy between decreases in the amplitude of compound muscle action potential and loss of motor function caused by ischemic and compressive insults to the spinal cord. J Orthop Sci 2002; 7 (1): 102–110. doi: 10.1007/s776-002-8430-x.
14. Iwasaki H, Tamaki T, Yoshida M et al. Efficacy and limitations of current methods of intraoperative spinal cord monitoring. J Orthop Sci 2003; 8 (5): 635–642. doi: 10.1007/s00776-003-0693-z.
15. Kobayashi K, Ando K, Shinjo R et al. A new criterion for the alarm point using a combination of waveform amplitude and onset latency in Br (E) -MsEP monitoring in spine surgery. J Neurosurg Spine 2018; 29 (4): 435–441. doi: 10.3171/2018.3.SPINE171348.
16. Beňuška J, Čembová N, Naser Y et. al. Evaluation of a combination of waveform amplitude latency and decrease of waveform amplitude magnitude during spinal surgery in intraoperative neurophysiological monitoring of transcranial motor evoked potentials and its incidence on postoperative neurological deficit. Acta Chir Orthop Traumatol Cech 2020; 87 (1): 39–47.
17. Riazi S, Kraeva N, Hopkins PM. Updated guide for the management of malignant hyperthermia. Can J Anaesth 2018; 65 (6): 709–721. doi: 10.1007/s12630-018-1108-0.
18. Chong CT, Manninen P, Sivanaser V et al. Direct comparison of the effect of desflurane and sevoflurane on intraoperative motor-evoked potentials monitoring. J Neurosurg Anesthesiol 2014; 26 (4): 306–312. doi: 10.1097/ANA.0000000000000041.
19. Xiang B, Jiao S, Zhang Y et al. Effects of desflurane and sevoflurane on somatosensory-evoked and motor-evoked potential monitoring during neurosurgery: a randomized controlled trial. BMC Anesthesiol 2021; 21 (1): 240. doi: 10.1186/s12871-021-01463-x.
20. Zentner J, Kiss I, Ebner A. Influence of anesthetics – nitrous oxide in particular – on electromyographic response evoked by transcranial electrical stimulation of the cortex. Neurosurgery 1989; 24 (2): 253–256. doi: 10.1227/00006123-198902000-00016.
21. Peyton PJ, Wu CY. Nitrous oxide-related postoperative nausea and vomiting depends on duration of exposure. Anesthesiology 2014; 120 (5): 1137–1145. doi: 10.1097/ALN.0000000000000122.
22. Nimmo AF, Absalom AR, Bagshaw O et al. Guidelines for the safe practice of total intravenous anaesthesia (TIVA): Joint Guidelines from the Association of Anaesthetists and the Society for Intravenous Anaesthesia. Anaesthesia 2019; 74 (2): 211–224. doi: 10.1111/anae.14 428.
23. Adamus M, Cvachovec K, Cerny V et al. Zásady bezpečné anesteziologické péče. Anest Intenziv Med 2018; 29 (2): 107–110.
24. Sahinovic MM, Struys MMRF, Absalom AR. Clinical pharmacokinetics and pharmacodynamics of propofol. Clin Pharmacokinet 2018; 57 (12): 1539–1558. doi: 10.1007/s40262-018-0672-3.
25. Nathan N, Tabaraud F, Lacroix F et. al. Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br J Anaesth 2003; 91 (4): 493–497. doi: 10.1093/bja/aeg211.
26. Olkkola KT, Ahonen J. Midazolam and other benzodiazepines. Handb Exp Pharmacol 2008; (182): 335–360. doi: 10.1007/978-3-540-74806-9_16.
27. Sahinovic MM, Gadella MC, Shils J et. al. Anesthesia and intraoperative neurophysiological spinal cord monitoring. Curr Opin Anaesthesiol 2021; 34 (5): 590–596. doi: 10.1097/ACO.0000000000001044.
28. Valk BI, Struys MMRF. Etomidate and its analogs: a review of pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 2021; 60 (10): 1253–1269. doi: 10.1007/s40262-021-01038-6.
29. Liu HY, Zeng HY, Cheng H et. al. Comparison of the effects of etomidate and propofol combined with remifentanil and guided by comparable BIS on transcranial electrical motor-evoked potentials during spinal surgery. J Neurosurg Anesthesiol 2012; 24 (2): 133–138. doi: 10.1097/ANA.0b013e31823dfb2e.
30. Kalkman CJ, Drummond JC, Ribberink AA. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 1992; 76 (4): 502–509. doi: 10.1097/00000542-199204000-00003.
31. Gao M, Rejaei D, Liu H. Ketamine use in current clinical practice. Acta Pharmacol Sin 2016; 37 (7): 865–872. doi: 10.1038/aps.2016.5.
32. Andleeb R, Agrawal S, Gupta P. Evaluation of the effect of continuous infusion of dexmedetomidine or a subanesthetic dose ketamine on transcranial electrical motor evoked potentials in adult patients undergoing elective spine surgery under total intravenous anesthesia: a randomized controlled exploratory study. Asian Spine J 2022; 16 (2): 221–230. doi: 10.31616/asj.2021.0015.
33. Lam S, Nagata M, Sandhu SK et. al. Effect of ketamine on transcranial motor-evoked potentials during spinal surgery: a pilot study. Br J Anaesth 2019; 123 (6): e530–e532. doi: 10.1016/j.bja.2019.09.005.
34. Dumps C, Halbeck E, Bolkenius D. Drugs for intravenous induction of anesthesia: barbiturates. Anaesthesist 2018; 67 (7): 535–552. doi: 10.1007/s00101-018-0440-7.
35. Woodforth IJ, Hicks RG, Crawford MR et al. Depression of I waves in corticospinal volleys by sevoflurane, thiopental, and propofol. Anesth Analg 1999; 89 (5): 1182–1187.
36. Davy A, Fessler J, Fischler M et al. Dexmedetomidine and general anesthesia: a narrative literature review of its major indications for use in adults undergoing non-cardiac surgery. Minerva Anestesiol 2017; 83 (12): 1294–1308. doi: 10.23736/S0375-9393.17.12040-7.
37. Nguyen V, Tiemann D, Park E et al. Alpha-2 agonists. Anesthesiol Clin 2017; 35 (2): 233–245. doi: 10.1016/j.anclin.2017.01.009.
38. Lee WH, Park CK, Park HP et al. Effect of dexmedetomidine combined anesthesia on motor evoked potentials during brain tumor surgery. World Neurosurg 2019; 123: e280–e287. doi: 10.1016/j.wneu.2018.11.152.
39. Chen Z, Lin S, Shao W. Effects on somatosensory and motor evoked potentials of senile patients using different doses of dexmedetomidine during spine surgery. Ir J Med Sci 2015; 184 (4): 813–818. doi: 10.1007/s11845-014-1178-0.
40. Vearrier D, Grundmann O. Clinical pharmacology, toxicity, and abuse potential of opioids. J Clin Pharmacol 2021; 61 (Suppl 2): S70–S88. doi: 10.1002/jcph.1923.
41. Smith MA, Morgan M. Remifentanil. Anaesthesia 1997; 52 (4): 291–293. doi: 10.1111/j.1365-2044.1997.00085.x.
42. Iwasaki H, Tamaki T, Yoshida M et al. Efficacy and limitations of current methods of intraoperative spinal cord monitoring. J Orthop Sci 2003; 8 (5): 635–642. doi: 10.1007/s00776-003-0693-z.
43. Venkatraghavan L, Royan N, Boyle SL et al. Effect of reversal of residual neuromuscular blockade on the amplitude of motor evoked potentials: a randomized controlled crossover study comparing sugammadex and placebo. Neurol Sci 2022; 43 (1): 615–623. doi: 10.1007/s10072-021-05318-8.
44. Macdonald DB, Skinner S, Shils J et al. Intraoperative motor evoked potential monitoring – a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol 2013; 124 (12): 2291–2316. doi: 10.1016/j.clinph.2013.07.025.
45. Oro J, Haghighi SS. Effects of altering core body temperature on somatosensory and motor evoked potentials in rats. Spine (Phila Pa 1976) 1992; 17 (5): 498–503. doi: 10.1097/00007632-199205000-00005.
46. Carson JL, Guyatt G, Heddle NM et al. Clinical Practice Guidelines from the AABB: red blood cell transfusion thresholds and storage. JAMA 2016; 316 (19): 2025–2035. doi: 10.1001/jama.2016.9185.
47. Ruetzler K, Kurz A. Consequences of perioperative hypothermia. Handb Clin Neurol 2018; 157: 687–697. doi: 10.1016/B978-0-444-64074-1.00041-0.
48. Li XJ, Lenke LG, Thuet E et al. Prone position-induced quadriceps transcranial motor evoked potentials signal loss – a case report. Spine Deform 2018; 6 (5): 627–630. doi: 10.1016/j.jspd.2018.02.008.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2022 Issue 6
Most read in this issue
- Guidelines for developmental dysphasia – version 2022
- Validation study and introduction of the new TEPO sentence comprehension test for children aged 3–8 years
- Limb girdle muscular dystrophies
- New pharmacological options in the treatment of Alzheimer‘s disease