Study protocol – robot-assisted gait therapy using Lokomat Pro FreeD in patients in the subacute phase of ischemic stroke
Authors:
I. Fiedorová 1,2; I. Chmelová 1; P. Hanzlíková 3; P. Eliáš 3; D. Šalounová 4; M. Bar 5; R. Líčeník 6,7; O. Volný 5,6
Authors‘ workplace:
Klinika rehabilitace a tělovýchovného, lékařství FN Ostrava
1; Ústav epidemiologie a hygieny, LF OU, Ostrava
2; Ústav radiodiagnostický, FN Ostrava
3; Katedra matematických metod v ekonomice, Ekonomická fakulta, VŠB – Technická univerzita Ostrava
4; Neurologická klinika, LF OU a FN Ostrava
5; České národní centrum Evidence-, -Based Healthcare a Knowledge, Translation, LF MU, Brno
6; North West Anglia NHS Foundation, Trust, Peterborough City Hospital, Department of neurology and Stroke, Peterborough, Velká Británie
7
Published in:
Cesk Slov Neurol N 2021; 84/117(4): 361-366
Category:
Original Paper
doi:
https://doi.org/10.48095/cccsnn2021361
Overview
Aim: Robot-assisted gait training represents a modern concept of neurorehabilitation in stroke patients. Our randomized interventional study aims to assess the additive effect of robot-assisted gait rehabilitation in subacute ischemic stroke patients and to compare its effect with patients undergoing standard institutional protocol-defined rehabilitation. The primary endpoint is the functional ambulation category. The secondary endpoints include gait time parameters (10 Meter Walk Test, Timed Up and Go), changes in body composition, modified Rankin scale, Barthel index, Berg balance scale, and a questionnaire Falls Efficacy Scale – International. Radiological sub-study evaluates the dynamics of brain structural changes and atrophy using MRI. Methods: This is a prospective randomized open monocentric study enrolling patients within 6 weeks from the onset of the firs ischemic stroke. Both groups are treated with conventional rehabilitation (physiotherapy, occupational therapy and mechanotherapy) for 60 min 5 times a week, a total of 15 times for 3 to 4 weeks (a total of 1,200 min). The Lokomat group undergoes robot-assisted gait training using the interventional exoskeleton for 20-50 minutes 5 times a week for a total of 15 times for 3 to 4 weeks (a total of 1,800 min). Data collection takes place over four time periods: pre-intervention (T0), mid-intervention (T1; day 8), post-rehabilitation assessment (T2; day 15), and 3 months post-intervention (T3).
Keywords:
gait – subacute stroke – Exoskeleton – Lokomat – neurorehabilitation
Sources
1. Pollock A, Baer G, Campbell P et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Systematic Rev 2014; 2014 (4): CD001920–CD001920. doi: 10.1002/ 14651858.CD001920.pub3.
2. Albert S, Kesselring J. Neurorehabilitation of stroke. J Neurol 2012; 259 (5): 817–832. doi: 10.1007/s00415-011-6247-y.
3. Winstein CJ, Stein J, Arena R et al. Guidelines for adult stroke rehabilitation and recovery a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016; 47 (6): E98–E169. doi: 10.1161/STR.0000000000000098.
4. Perin C, Bolis M, Limonta M et al. Differences in rehabilitation needs after stroke: a similarity analysis on the ICF core set for stroke. Int J Environ Res Public Health 2020; 17 (12): 4291. doi: 10.3390/ijerph17124291.
5. Maier M, Ballester BR, Verschure PFMJ et al. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front Syst Neurosci 2019; 13: 74. doi: 10.3389/fnsys.2019.00074.
6. Morone G, Paolucci S, Cherubini A et al. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat 2017; 13: 1303–1311. doi: 10.2147/NDT.S114102.
7. Mehrholz J, Thomas S, Kugler J et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2020; 10 (10): CD006185. doi: 10.1002/ 14651858.CD006185.pub5.
8. Calabró RS, Sorrentino G, Cassio A et al. Robotic-assisted gait rehabilitation following stroke: a systematic review of current guidelines and practical clinical recommendations. Eur J Phys Rehabil Med 2021; 57 (3): 460–471. doi: 10.23736/S1973-9087.21.06887-8.
9. Bruni MF, Melegari C, De Cola MC et al. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta--analysis. J Clin Neurosci 2018; 48: 11–17. doi: 10.1016/j.jocn.2017.10.048.
10. Kim YH. Robotic assisted rehabilitation therapy for enhancing gait and motor function after stroke. Precis Future Med 2019; 3 (3): 103–115. https: //doi.org/ 10.23838/ pfm.2019.00065.
11. Tedla JS, Dixit S, Gular K et al. Robotic-assisted gait training effect on function and gait speed in subacute and chronic stroke population: a systematic review and meta-analysis of randomized controlled trials. Eur Neurol 2019; 81 (3–4): 103–111. doi: 10.1159/000500 747.
12. Platz, T. Evidence-based guidelines and clinical pathways in stroke rehabilitation-an international perspective. Front Neurol 2019; 10: 200. doi: 10.3389/fneur.2019.00200.
13. Mehrholz J, Pohl M, Kugler J et al. The improvement of walking ability following stroke. Dtsch Arztebl Int 2018; 115 (39): 639–645. doi: 10.3238/arztebl.2018. 0639.
14. Mehrholz J, Thomas S, Werner C et al. Electromechanical-assisted training for walking after stroke: a major update of the evidence. Stroke 2017; 48 (8): E188–E189. doi: 10.1161/STROKEAHA.117.018018.
15. Moucheboeuf G, Griffier R, Gasq D et al. Effects of robotic gait training after stroke: a meta-analysis. Ann Phys Rehabil Med 2020; 63 (6): 518–534. doi: 10.1016/j.rehab.2020.02.008.
16. Swinnen E, Beckwée D, Meeusen R et al. Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review. Top Stroke Rehabil 2014; 21 (2): 87–100. doi: 10.1310/tsr2102-87.
17. Mehrholz J, Wagner K, Meissner D et al. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch Phys Med Rehabil 2007. 88 (10): 1314–1319. doi: 10.1016/j.apmr.2007.06.764.
18. Perry J, Garrett M, Gronley JK et al. Classification of walking handicap in the stroke population. Stroke 1995; 26 (6): 982–989. doi: 10.1161/01.str.26.6.982.
19. Laren A, Odqvist A, Hansson P et al. Fear of falling in acute stroke: the fall study of gothenburg (FallsGOT). Top Stroke Rehabil 2018 25 (4): 256–260. doi: 10.1080/10749357.2018.1443876.
20. Schinkel-Ivy A, Inness EL, Mansfield A. Relationships between fear of falling, balance confidence, and control of balance, gait, and reactive stepping in individuals with sub-acute stroke. Gait Posture 2016. 43: 154–159. doi: 10.1016/j.gaitpost.2015.09.015.
21. Minet LR, Peterson E, von Koch L et al. Occurrence and predictors of falls in people with stroke: six-year prospective study. Stroke 2015; 46 (9): 2688–2690. doi: 10.1161/STROKEAHA.115.010496.
22. Yang YR, Yen JG, Wang RY et al. Gait outcomes after additional backward walking training in patients with stroke: a randomized controlled trial. Clin Rehabil 2005; 19 (3): 264–273. doi: 10.1191/0269215505cr860oa.
23. Weng CS, Wang J, Pan XY et al. Effectiveness of backward walking treadmill training in lower extremity function after stroke. Zhonghua Yi Xue Za Zhi 2006; 86 (37): 2635–2638.
24. Chang KW, Lin CM, Yen CW et al. The effect of walking backward on a treadmill on balance, speed of walking and cardiopulmonary fitness for patients with chronic stroke: a pilot study. Int J Environ Res Public Health 2021; 18 (5): 2376. doi: 10.3390/ijerph18052376.
25. Aurich-Schuler T, Gut A, Labruyere R. The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people – a proof of concept study. J Neuroeng Rehabil 2019; 16 (1): 26. doi: 10.1186/s12984-019-0496-x.
26. Park IJ, Park JH, Seong HY et al. Comparative effects of different assistance force during robot-assisted gait training on locomotor functions in patients with subacute stroke: an assessor-blind, randomized controlled trial. Am J Phys Med Rehabil 2019; 98 (1): 58–64. doi: 10.1097/PHM.0000000000001027.
27. Berg KO, Wood-Dauphinee SL, Williams JI et al. Measuring balance in the elderly: validation of an instrument. Can J Public Health 1992; 83: S7–S11.
28. Reguli Z, Svobodová L. Česká verze diagnostiky strachu z pádů u seniorů – FES-I (Falls Efficacy Scale International). Studia Sportiva 2011; 5 (2): 5–12. doi: 10.5817/StS 2011-2-1.
29. Husemann B, Müller F, Krewer C et al. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 2007; 38 (2): 349–354. doi: 10.1161/01.STR.0000254607.48765.cb.
30. van Nunen MPM, Gerrits GHL, Konijnenbelt M et al. Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study. Disabil Rehabil Assist Technol 2015; 10 (2): 141–148. doi: 10.3109/17483107.2013.873489.
31. Hidler J, Nichols D, Pelliccio M et al. Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil Neural Repair 2009; 23 (1): 5–13. doi: 10.1177/1545968308326 632.
32. Taveggia G, Borboni A, Mulé C et al. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: a randomized clinical trial. Int J Rehabil Res 2016; 39 (1): 29–35. doi: 10.1097/MRR.0000000000000137.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2021 Issue 4
Most read in this issue
- Why do the nerve tracts decussate? Basic principles of the vertebrate brain organization
- COVID-19 related olfactory impairment – diagnostics, significance and treatment
- CANVAS – a newly identified genetic cause of late-onset ataxia. Description of the first cases in the Czech Republic
- COVID-19 associated myelitis – a case report of rare complication of severe SARS-CoV-2 infection