Clinical manifestations of spinal muscular atrophy in adult patients
Authors:
T. Horák 1; J. Bednařík 1; M. Horáková 1; D. Botiková 2; S. Voháňka 1
Authors‘ workplace:
Neurologická klinika, ERN-EURO NMD Centrum, LF MU a FN Brno
1; Rehabilitační oddělení, LF MU a FN Brno
2
Published in:
Cesk Slov Neurol N 2020; 83/116(Supplementum 2): 13-16
doi:
https://doi.org/10.48095/cccsnn20202S13
Overview
Spinal muscular atrophy (SMA) is a phenotypically heterogeneous disease. Although the life expectancy and motor capability is significantly reduced in most patients, SMA types III and IV patients live to adulthood. In some cases, the association with a higher number of copies of the SMN2 gene and other protective factors are responsible for minimal motor impairment only. However, precise data on the prevalence of this disease in adult patients remain unknown. In the adult age, in addition to the classical 5q13 form of SMA, there are other rare genetic forms of late onset SMA with dominant disability in the lower limbs, which must be distinguished because of different clinical and therapeutic approaches. Since the development of SMA therapy, there has been a need for a clinical evaluation of therapeutic response and a definition of multidisciplinary care standards that have some specifics in adult SMA patients.
Keywords:
spinal muscular atrophy – Adults – motor neuron – Kennedy‘s disease – differential diagnostics
Sources
1. Verhaart IE, Robertson A, Wilson IJ et al. Prevalence, incidence and carrier frequency of 5q–linked spinal muscular atrophy – a literature review. Orphanet J Rare Dis 2017; 12(1): 124. doi: 10.1186/ s13023-017-0671-8.
2. Strenkova J, Vohanka S, Haberlova J et al. REaDY – Czech Registry of Muscular Dystrophies. Cesk Slov Neurol N 2014; 77/ 110(2): 230–234.
3. Mercuri E, Mazzone E, Finkel R et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018; 28(2): 103–115. doi: 10.1016/ j.nmd.2017.11.005.
4. Finkel RS, Mercuri E, Meyer OH et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2018; 28(3): 197–207. doi: 10.1016/ j.nmd.2017.11.004.
5. Talbot K, Tizzano EF. The clinical landscape for SMA in a new therapeutic era. Gene Ther 2017; 24(9): 529–533. doi: 10.1038/ gt.2017.52.
6. Mercuri E, Bertini E, Iannaccone ST. Childhood spinal muscular atrophy: controversies and challenges. Lancet Neurol 2012; 11(5): 443–452. doi: 10.1016/ S1474-4422(12)70061-3.
7. Wirth B, Brichta L, Schrank B et al. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet 2006; 119(4): 422–428. doi: 10.1007/ s00439-006-0156-7.
8. Munsat TL, Davies KE. International SMA consortium meeting. (26-28 June 1992, Bonn, Germany). Neuromuscul Disord 1992; 2(5–6): 423–428. doi: 10.1016/ s0960-8966(06)80015-5.
9. Piepers S, van den Berg LH, Brugman F et al. A natural history study of late onset spinal muscular atrophy types 3b and 4. J Neurol 2008; 255(9): 1400–1404. doi: 10.1007/ s00415-008-0929-0.
10. Farrar MA, Vucic S, Johnston HM et al. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr 2013; 162(1): 155–159. doi: 10.1016/ j.jpeds.2012.05.067.
11. Park HB, Lee SM, Lee JS et al. Survival analysis of spinal muscular atrophy type I. Korean J Pediatr 2010; 53(11): 965–970. doi: 10.3345/ kjp.2010.53.11.965.
12. Zerres K, Rudnik-Schöneborn S, Forrest E et al. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci 1997; 146(1): 67–72. doi: 10.1016/ s0022-510x(96)00284-5.
13. Juntas Morales R, Pageot N, Taieb G et al. Adult-onset spinal muscular atrophy: an update. Rev Neurol (Paris) 2017; 173(5): 308–319. doi: 10.1016/ j.neurol.2017.03.015.
14. Finsterer J. Bulbar and spinal muscular atrophy (Kennedy’s disease): a review. Eur J Neurol 2009; 16(5): 556–561. doi: 10.1111/ j.1468-1331.2009.02591.x.
15. Penttilä S, Jokela M, Bouquin H et al. Late onset spinal motor neuronopathy is caused by mutation in CHCHD10. Ann Neurol 2015; 77(1): 163–172. doi: 10.1002/ ana.24319.
16. Nishimura AL, Mitne-Neto M, Silva HC et al. A mutation in the vesicle-trafficking protein VAPB causes late--onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004; 75(5): 822–831. doi: 10.1086/ 425287.
17. Kosac V, de Freitas MR, Prado FM et al. Familial adult spinal muscular atrophy associated with the VAPB gene: report of 42 cases in Brazil. Arq Neuropsiquiatr 2013; 71(10): 788–790. doi: 10.1590/ 0004-282X20130123.
18. Rossor AM, Oates EC, Salter HK et al. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain J Neurol 2015; 138(Pt 2): 293–310. doi: 10.1093/ brain/ awu356.
19. Neveling K, Martinez-Carrera LA, Hölker I et al. Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy. Am J Hum Genet 2013; 92(6): 946–954. doi: 10.1016/ j.ajhg.2013.04.011.
20. Iwahara N, Hisahara S, Hayashi T et al. A novel lamin A/ C gene mutation causing spinal muscular atrophy phenotype with cardiac involvement: report of one case. BMC Neurol 2015; 15: 13. doi: 10.1186/ s12883-015-0269-5.
21. Rudnik-Schöneborn S, Botzenhart E, Eggermann T et al. Mutations of the LMNA gene can mimic autosomal dominant proximal spinal muscular atrophy. Neurogenetics 2007; 8(2): 137–142. doi: 10.1007/ s10048-006-0070-0.
22. Devic P, Petiot P. [Distal hereditary motor neuropathy]. Rev Neurol (Paris) 2011; 167(11): 781–790. doi: 10.1016/ j.neurol.2011.03.003.
23. Mazanec R, Potočková V, Laššuthová P et al. Hereditární motorické neuropatie. Neurol praxi 2016; 17(6): 354–358. doi: 10.36290/ neu.2016.074.
24. Ikeda K, Iwasaki Y. Study of 962 patients indicates progressive muscular atrophy is a form of ALS. Neurology 2010; 74(23): 1926. doi: 10.1212/ WNL.0b013e3181e03ac0.
25. Liewluck T, Saperstein DS. Progressive Muscular Atrophy. Neurol Clin 2015; 33(4): 761–773. doi: 10.1016/ j.ncl.2015.07.005.
26. Fujak A, Kopschina C, Gras F et al. Contractures of the upper extremities in spinal muscular atrophy type II. Descriptive clinical study with retrospective data collection. Ortop Traumatol Rehabil 2010; 12(5): 410–419.
27. Haaker G, Fujak A. Proximal spinal muscular atrophy: current orthopedic perspective. Appl Clin Genet 2013; 6(11): 113–120. doi: 10.2147/ TACG.S53615.
28. Willig TN, Bach JR, Rouffet MJ et al. Correlation of flexion contractures with upper extremity function and pain for spinal muscular atrophy and congenital myopathy patients. Am J Phys Med Rehabil 1995; 74(1): 33–38. doi: 10.1097/ 00002060-199501000-00006.
29. de Groot IJM, de Witte LP. Physical complaints in ageing persons with spinal muscular atrophy. J Rehabil Med 2005; 37(4): 258–262. doi: 10.1080/ 16501970510030156.
30. Mazzone E, Mayhew A, Montes J et al. Revised upper limb module for spinal muscular atrophy: Development of a new module: RULM in SMA. Muscle Nerve 2016; 55(6). doi: 10.1002/ mus.25430.
31. Ramsey D, Scoto M, Mayhew A et al. Revised Hammersmith Scale for spinal muscular atrophy: A SMA specific clinical outcome assessment tool. PLoS ONE 2017; 12(2): e0172346. doi: 10.1371/ journal.pone.0172346.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2020 Issue Supplementum 2
Most read in this issue
- Clinical manifestations of spinal muscular atrophy in adult patients
- Genetics of spinal muscular atrophy
- Therapy of spinal muscular atrophy
- Rehabilitation in spinal muscular atrophy