#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Changes of paraspinal muscle morphology in patients with chronic non-specific low back pain


Authors: E. Vagaská 1;  T. Andrašina 2 ;  S. Voháňka 1;  B. Adamová 1
Authors‘ workplace: Neurologická klinika LF MU a FN Brno 1;  Radiologická klinika LF MU a FN Brno 2
Published in: Cesk Slov Neurol N 2019; 82(5): 505-512
Category: Review Article
doi: https://doi.org/10.14735/amcsnn2019505

Overview

Low back pain (LBP) is a frequent and major health problem. Paraspinal muscles play an important role in trunk movements, help­­ing to maintain posture and spinal stability. Changes of paraspinal muscle morphology and function are described in patients with chronic LBP. Macroscopic changes can be evaluated by CT and especial­ly by MRI, while microscopic changes are as­ses­sed by muscle bio­psy. There is evidence available in literature stat­­ing that atrophy of paraspinal muscles and increased fat deposits in the paraspinal muscles are significantly as­sociated with non-specific LBP, especial­ly with chronic LBP. From a dif­ferential dia­gnostic point of view, changes in paraspinal muscles as­sociated with LBP must be distinguished from paraspinal muscle involvement in patients with axial myopathies, but these are rare. The aim of this paper is to highlight the structural and functional changes of paraspinal muscles in patients with chronic non-specific LBP. A dia­gnostic algorithm for chronic LBP as­sociated with degeneration of paraspinal muscles to exclude the presence of axial myopathy is presented.

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.

Keywords:

Spine – low back pain – paraspinal muscles – fat infiltration – axial myopathies


Sources

1. Airaksinen O, Brox JI, Cedraschi C et al. Chapter 4. European guidelines for the management of chronic non--specific low back pain. Eur Spine J 2006; 15 (Suppl 2): S192– S300.

2. Balagué F, Man­nion AF, Pel­lisé F et al. Non-specific low back pain. Lancet 2012; 379(9814): 482– 491. doi: 10.1016/ S0140-6736(11)60610-7.

3. Endean A, Palmer KT, Coggon D. Potential of magnetic resonance imag­­ing findings to refine case definition for mechanical low back pain in epidemiological studies: a systematic review. Spine (Phila Pa 1976) 2011; 36(2): 160– 169. doi: 10.1097/ BRS.0b013e3181cd9adb.

4. Kalichman L, Cole R, Kim DH et al. Spinal stenosis preva­lence and as­sociation with symp­toms: the Framingham Study. Spine J 2009; 9(7): 545– 550. doi: 10.1016/ j.spinee.2009.03.005.

5. Kalichman L, Kim DH, Li L et al. Computed tomography-evaluated features of spinal degeneration: preva­lence, intercor­relation, and as­sociation with self-reported low back pain. Spine J 2010; 10(3): 200– 208. doi: 10.1016/ j.spinee.2009.10.018.

6. Cheung KM, Karppinen J, Chan D et al. Prevalence and pattern of lumbar magnetic resonance imag­­ing changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 2009; 34(9): 934– 940. doi: 10.1097/ BRS.0b013e3181a01b3f.

7. Suri P, Hunter DJ, Rainvil­le J et al. Presence and extent of severe facet joint osteoarthritis are as­sociated with back pain in older adults. Osteoarthritis Cartilage 2013; 21(9): 1199– 1206. doi: 10.1016/ j.joca.2013.05.013.

8. Määttä JH, Wadge S, MacGregor A et al. ISSLS prize win­ner: vertebral endplate (modic) change is an independent risk factor for episodes of severe and disabl­­ing low back pain. Spine (Phila Pa 1976) 2015; 40(15): 1187– 1193. doi: 10.1097/ BRS.0000000000000937.

9. Mok FP, Samartzis D, Karppinen J et al. Modic changes of the lumbar spine: prevalence, risk factors, and as­sociation with disc degeneration and low back pain in a large-scale population-based cohort. Spine J 2016; 16(1): 32– 41. doi: 10.1016/ j.spinee.2015.09.060.

10. Andrasinova T, Adamova B, Buskova J et al. Is therea cor­relation between degree of radiologic lumbar spinal stenosis and its clinical manifestation? Clin Spine Surg 2018; 31(8): E403– E408. doi: 10.1097/ BSD.0000000000000681.

11. Vagaska E, Litavcova A, Srotova I et al. Do lumbar magnetic resonance imag­­ing changes predict neuropathic pain in patients with chronic non-specific low back pain? Medicine (Baltimore) 2019; 98(17): e15377. doi: 10.1097/ MD.0000000000015377.

12. Berg L, Hel­lum C, Gjertsen Ø et al. Do more MRI findings imply worse disability or more intense low back pain? A cros­s-sectional study of candidates for lumbar disc prosthesis. Skeletal Radiol 2013; 42(11): 1593– 1602. doi: 10.1007/ s00256-013-1700-x.

13. Kalichman L, Carmeli E, Been E. The As­sociation between imag­­ing parameters of the paraspinal muscles, spinal degeneration, and low back pain. Biomed Res Int 2017; 2017: 2562957. doi: 10.1155/ 2017/ 2562957.

14. Feneis H. Anatomický obrazový slovník. 4. vyd. Praha: Avicenum 1981.

15. Bednařík J, Lukáš Z. Základy anatomie a funkce kosterního svalstva. In: Bednařík J (ed). Nemoci kosterního svalstva. Praha: Triton 2001: 23– 38.

16. Man­nion AF. Fibre type characteristics and function of the human paraspinal muscles: normal values and changes in as­sociation with low back pain. J Electromyogr Kinesiol 1999; 9(6): 363– 377.

17. Agten A, Verbrugghe J, Stevens S et al. Feasibility, accuracy and safety of a percutaneous fine-needle bio­psy technique to obtain qualitative muscle samples of the lumbar multifidus and erector spinae muscle in persons with low back pain. J Anat 2018; 233(4): 542– 551. doi: 10.1111/ joa.12867.

18. Freeman MD, Woodham MA, Woodham AW. The role of the lumbar multifidus in chronic low back pain: a review. PM R 2010; 2(2): 142– 146. doi: 10.1016/ j.pmrj.2009.11.006.

19. Nicholas MK, Linton SJ, Watson PJ et al. Early identification and management of psychological risk factors („yel­low flags“) in patients with low back pain: a reappraisal. Phys Ther 2011; 91(5): 737– 753. doi: 10.2522/ ptj.20100224.

20. Wan Q, Lin C, Li X et al. MRI as­ses­sment of paraspinal muscles in patients with acute and chronic unilateral low back pain. Br J Radiol 2015; 88(1053): 20140546. doi: 10.1259/ bjr.20140546.

21. Sasaki T, Yoshimura N, Hashizume H et al. MRI-defined paraspinal muscle morphology in Japanese population: The Wakayama Spine Study. PLoS One 2017; 12(11): e0187765. doi: 10.1371/ journal.pone.0187765.

22. Goubert D, Oosterwijck JV, Meeus M et al. Structural Changes of lumbar muscles in non-specific low back pain: a systematic review. Pain Physician 2016; 19(7): E985– E1000.

23. Goutal­lier D, Postel JM, Bernageau J et al. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 1994; (304): 78– 83.

24. Kader DF, Wardlaw D, Smith FW. Cor­relation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol 2000; 55(2): 145– 149. doi: 10.1053/ crad.1999.0340.

25. Kjaer P, Bendix T, Sorensen JS et al. Are MRI-defined fat infiltrations in the multifidus muscles as­sociated with low back pain? BMC Med 2007; 5: 2. doi: 10.1186/ 1741-7015-5-2.

26. Upadhyay B, Toms AP. CT and MRI evaluation of para­spinal muscle degeneration. Poster ECR 2015/ C-2114. doi: 10.1594/ ecr2015/ C-2114.

27. Lee SH, Park SW, Kim YB et al. The fatty degeneration of lumbar paraspinal muscles on computed tomography scan accord­­ing to age and disc level. Spine J 2017; 17(1): 81– 87. doi: 10.1016/ j.spinee.2016.08.001.

28. Ur­rutia J, Besa P, Lobos D et al. Is a single-level measurement of paraspinal muscle fat infiltration and cros­s--sectional area representative of the entire lumbar spine? Skeletal Radiol 2018; 47(7): 939– 945. doi: 10.1007/ s00256-018-2902-z.

29. Takayama K, Kita T, Nakamura H et al. New Predictive index for lumbar paraspinal muscle degeneration as­sociated with aging. Spine (Phila Pa 1976) 2016; 41(2): E84– E90. doi: 10.1097/ BRS.0000000000001154.

30. Crawford RJ, Fil­li L, El­liott JM et al. Age- and level-dependence of fatty infiltration in lumbar paravertebral muscles of healthy volunteers. AJNR Am J Neuroradiol 2016; 37(4): 742– 748. doi: 10.3174/ ajnr.A4596.

31. Ur­rutia J, Besa P, Lobos D et al. Lumbar paraspinal muscle fat infiltration is independently as­sociated with sex, age, and inter-vertebral disc degeneration in symp­tomatic patients. Skeletal Radiol 2018; 47(7): 955– 961. doi: 10.1007/ s00256-018-2880-1.

32. Shahidi B, Par­ra CL, Ber­ry DB et al. Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine (Phila Pa 1976) 2017; 42(8): 616– 623. doi: 10.1097/ BRS.0000000000001848.

33. Kalichman L, Hodges P, Li L et al. Changes in paraspinal muscles and their as­sociation with low back pain and spinal degeneration: CT study. Eur Spine J 2010; 19(7): 1136– 1144. doi: 10.1007/ s00586-009-1257-5.

34. Barker KL, Shamley DR, Jackson D. Changes in the cros­s-sectional area of multifidus and psoas in patients with unilateral back pain: the relationship to pain and disability. Spine (Phila Pa 1976) 2004; 29(22): E515– E519. doi: 10.1097/ 01.brs.0000144405.11661.eb.

35. Dan­neels LA, Vanderstraeten GG, Cambier DC et al. CT imag­­ing of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J 2000; 9(4): 266– 272. doi: 10.1007/ s005860000190.

36. Parkkola R, Rytökoski U, Kormano M. Magnetic resonance imag­­ing of the discs and trunk muscles in patients with chronic low back pain and healthy control subjects. Spine (Phila Pa 19756) 1993; 18(7): 830– 836. doi: 10.1097/ 00007632-199306000-00004.

37. Fortin M, Macedo LG. Multifidus and paraspinal muscle group cros­s-sectional areas of patients with low back pain and control patients: a systematic review with a focus on blinding. Phys Ther 2013; 93(7): 873– 888. doi: 10.2522/ ptj.20120457.

38. Teichtahl AJ, Urquhart DM, Wang Y et al. Fat infiltration of paraspinal muscles is as­sociated with low back pain, disability, and structural abnormalities in com­munity-based adults. Spine J 2015; 15(7): 1593– 1601. doi: 10.1016/ j.spinee.2015.03.039.

39. D‘hooge R, Cagnie B, Crombez G et al. Increased intramuscular fatty infiltration without dif­ferences in lumbar muscle cros­s-sectional area dur­­ing remis­sion of unilateral recur­rent low back pain. Man Ther 2012; 17(6): 584– 588. doi: 10.1016/ j.math.2012.06.007.

40. Özcan-Ekşi EE, Ekşi MŞ, Akçal MA. Severe lumbar intervertebral disc degeneration is as­sociated with modic changes and fatty infiltration in the paraspinal muscles at all lumbar levels, except for L1– L2: a cros­s-sectional analysis of 50 symp­tomatic women and 50 age-matched symp­tomatic men. World Neurosurg 2019; 122: e1069-e1077. doi: 10.1016/ j.wneu.2018.10.229.

41. Chen YY, Pao JL, Liaw CK et al. Image changes of para­spinal muscles and clinical cor­relations in patients with unilateral lumbar spinal stenosis. Eur Spine J 2014; 23(5): 999– 1006. doi: 10.1007/ s00586-013-3148-z.

42. Jiang J, Wang H, Wang L et al. Multifidus degeneration, a new risk factor for lumbar spinal stenosis: a case--control study. World Neurosurg 2017; 99: 226– 231. doi: 10.1016/ j.wneu.2016.11.142.

43. Demoulin C, Crielaard JM, Vanderthom­men M. Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review. Joint Bone Spine 2007; 74(1): 9– 13. doi: 10.1016/ j.jbspin.2006.02.013.

44. Man­nion AF, Käser L, Weber E et al. Influence of age and duration of symp­toms on fibre type distribution and size of the back muscles in chronic low back pain patients. Eur Spine J 2000; 9(4): 273– 281. doi: 10.1007/ s005860000189.

45. Storheim K, Holm I, Gunderson R et al. The ef­fect of comprehensive group train­­ing on cros­s-sectional area, density, and strength of paraspinal muscles in patients sick-listed for subacute low back pain. J Spinal Disord Tech 2003; 16(3): 271– 279.

46. Kel­ler A, Brox JI, Gunderson R et al. Trunk muscle strength, cros­s-sectional area, and density in patients with chronic low back pain randomized to lumbar fusion or cognitive intervention and exercises. Spine (phila Pa 1976) 2004; 29(1): 3– 8. doi: 10.1097/ 01.BRS.0000103946.26548.EB.

47. Hides JA, Jull GA, Richardson CA. Long-term ef­fects of specific stabiliz­­ing exercises for first-episode low back pain. Spine (Phila Pa 1976) 2001; 26(11): E243– E248. doi: 10.1097/ 00007632-200106010-00004.

48. Ghosh PS, Milone M. Camptocormia as present­­ing manifestation of a spectrum of myopathic disorders. Muscle Nerve 2015; 52(6): 1008– 1012. doi: 10.1002/ mus.24689.

49. Gáti I, Daniels­son O, Gun­nars­son C et al. Bent spine syndrome: a phenotype of dysferlinopathy or a symp­tomatic DYSF gene mutation car­rier. Eur Neurol 2012; 67(5): 300– 302. doi: 10.1159/ 000336265

50. Laroche M, Cintas P. Bent spine syndrome (camptocormia): a retrospective study of 63 patients. Joint Bone Spine 2010; 77(6): 593-596. doi: 10.1016/ j.jbspin.2010.05.012.

51. Dahlqvist JR, Vis­s­­ing CR, Thomsen C et al. Severe para­spinal muscle involvement in facioscapulohumeral muscular dystrophy. Neurology 2014; 83(13): 1178– 1183. doi: 10.1212/ WNL.0000000000000828.

52. Witt­­ing N, Andersen LK, Vis­s­­ing J. Axial myopathy: an overlooked feature of muscle dis­eases. Brain 2016; 139 (Pt 1): 13– 22. doi: 10.1093/ brain/ awv332.

53. Ghosh PS, Milone M. Clinical and laboratory findings of 21 patients with radiation-induced myopathy. J Neurol Neurosurg Psychiatry 2015; 86(2): 152– 158. doi: 10.1136/ jn­np-2013-307447.

54. Løseth S, Voermans NC, Torbergsen T et al. A novel late-onset axial myopathy as­sociated with mutations in the skeletal muscle ryanodine receptor (RYR1) gene. J Neurol 2013; 260(6): 1504– 1510. doi: 10.1007/ s00415-012-6817-7.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 5

2019 Issue 5

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#