Multiple sclerosis and the role of gut microbiota during a harmful inflammatory response
Authors:
J. Krejsek
Authors‘ workplace:
Ústav klinické imunologie a alergologie LF UK a FN Hradec Králové
Published in:
Cesk Slov Neurol N 2019; 82(2): 141-147
Category:
Review Article
doi:
https://doi.org/10.14735/amcsnn2019141
Overview
Majority of body compartments, especially the gut, skin, respiratory and genitourinary tracts, is normally inhabited by highly complex microbial populations designated as microbiota. Gut microbiota is the best studied so far. Colonisation patterns of gut microbiota which are acquired early during ontogeny, especially during the infant’s age, are normally maintained for life. Both mucosal and systemic immunity, which are highly individualized, are determined by physiological gut microbiota. Dysbiosis which is disturbed gut microbiota is followed by extensive negative impacts on human physiology. Recently, substantial links between gut microbiota and CNS were found. Whereas physiological colonisation patterns are supporting optimal development of brain structures by providing them with some energy and homeostatic regulations on inflammatory processes, dysbiotic microbiota results in abnormal functional polarisation of T cell subsets. The result is the initiation and the progression of a harmful inflammatory response which might be a part of the pathophysiological processes leading to the development of MS. Gut microbiota could be positively modulated via optimal nutrition rich in prebiotic oligosaccharides, probiotics, and postbiotics. The optimalisation of nutrition can influence harmful inflammation in MS patients as evidenced in some animal models. Clinical trials to evaluate the efficacy of fecal microbiota transplantation in MS patients can be expected in the near future.
The author declares he has no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Keywords:
communication – Multiple sclerosis – gut microbiota – harmful inflammation – Modulation
Sources
1. Surana NK, Kasper DL. Deciphering the tete-a-tete between the microbiota and the immune system. J Clin Invest 2014; 124(10): 4197– 4203. doi: 10.1172/ JCI72332.
2. Stanley D, Moore RJ, Wong CH. An insight into intestinal mucosal microbiota disruption after stroke. Sci Rep 2018; 8(1): 568. doi: 10.1038/ s41598-017-18904-8.
3. Vieira Borba V, Sharif K, Shoenfeld Y. Breastfeeding and autoimmunity: programing health from the beginning. Am J Reprod Immunol 2018; 79(1). doi: 10.1111/ aji.12778.
4. Wekerle H. Brain autoimmunity and intestinal microbiota: 100 trillion game changers. Trends Immunol 2017; 37(7): 483– 497.
5. Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther 2016; 158: 52– 62. doi: 10.1016/ j.pharmthera.2015.11.012.
6. Statovci D, Aguilera M, MacSharry J et al. The impact of western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front Immunol 2017; 8: 838. doi: 10.3389/ fimmu.2017.00838.
7. Perez-Munoz ME, Arrieta MC, Ramer-Tait AE et al. A critical assessment of the „sterile womb“ and „in utero colonization“ hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017; 5(1): 48. doi: 10.1186/ s40168-017-0268-4.
8. Lazar V, Ditu LM, Pircalabioru GG et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol 2018; 9: 1830. doi: 10.3389/ fimmu.2018.01830.
9. Zamvil SS, Spencer CM, Baranzini SE et al. The gut microbiome in neuromyelitis optica. Neurotherapeutics 2018; 15(1): 92– 101. doi: 10.1007/ s13311-017-0594-z.
10. Virtanen S, Kalliala I, Nieminen P et al. Comparative analysis of vaginal microbiota sampling using 16S rRNA gene analysis. PLoS One 2017; 12(7): e0181477. doi: 10.1371/ journal.pone.0181477.
11. Krejsek J, Andrys C, Krcmova I. Imunologie člověka. 1. vyd. Hradec Králové: Garamon 2016.
12. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14(8): e1002533. doi: 10.1371/ journal.pbio.1002533.
13. Bilen M, Dufour JC, Lagier JC et al. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome 2018; 6(1): 94. doi: 10.1186/ s40168-018-0485-5.
14. Maranduba CM, De Castro SB, de Souza GT et al. Intestinal microbiota as modulators of the immune system and neuroimmune system: Impact on the host health and homeostasis. J Immunol Res 2015: 931574. doi: 10.1155/ 2015/ 931574.
15. Ma N, Guo P, Zhang J et al. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front Immunol 2018; 9: 5. doi: 10.3389/ fimmu.2018.00005.
16. Kho ZY, Lal SK. The human gut microbiome – a potential controller of wellness and disease. Front Microbiol 2018; 9: 1835. doi: 10.3389/ fmicb.2018.01835.
17. Hrnčíř Z. Kloubní zánět a mikrobi na škále od mikrobiomu po septickou artritidu. Čes Revmatol 2017; 25(4): 164– 171.
18. Cox LM, Weiner HL. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics 2018; 15(1): 135– 145. doi: 10.1007/ s13311-017-0598-8.
19. van den Hoogen WJ, Laman JD, Hart BA. Modulation of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis by food and gut microbiota. Front Immunol 2017; 8: 1081. doi: 10.3389/ fimmu.2017.01081.
20. Alkasir R, Li J, Li X et al. Human gut microbiota: the links with dementia development. Protein Cell 2017; 8(2): 90– 102. doi: 10.1007/ s13238-016-0338-6.
21. Hamilton MK, Raybould HE. Bugs, guts and brains, and the regulation of food intake and body weight. Int J Obes Suppl 2016; 6(Suppl 1): S8– S14. doi: 10.1038/ ijosup.2016.3.
22. Fard NA, Azizi G, Mirshafiey A. The potential role of T helper cell 22 and IL-22 in immunopathogenesis of multiple sclerosis. Innov Clin Neurosci 2016; 13(7– 8): 30– 36.
23. Fleck AK, Schuppan D, Wiendl H et al. Gut-CNS-axis as possibility to modulate inflammatory disease activity-implictions for multiple sclerosis. Int J Mol Sci 2017; 18(7): 1526. doi: 10.3390/ ijms18071526.
24. Roy Sarkar S, Banerjee S. Gut microbiota in neurodegenerative disorders. J Neuroimmunol 2019; 328: 98– 104. doi: 10.1016/ j.jneuroim.2019.01.004.
25. Christiansen SH, Murphy RA, Juul-Madsen K et al. The immunomodulatory drug glatiramer acetate i salso an effective antimicrobial agent that kills Gram-negative bacteria. Sci Rep 2017; 7(1): 15653. doi: 10.1038/ s41598-017-15969-3.
26. Forbes JD, Bernstein CN, Tremlett H et al. A fungal world: could the gut mycobiome be involved in neurological disease? Front Microbiol 2019; 9: 3249. doi: 10.3389/ fmicb.2018.03249.
27. Bhargava P, Mowry EM. Gut microbiome and multiple sclerosis. Curr Neurol Neurosci Rep 2014; 14(10): 492. doi: 10.1007/ s11910-014-0492-2.
28. Adamczyk-Sowa M, Medrek A, Madej P et al. Does the gut microbiota influcence immunity and inflammation in multiple sclerosis pathophysiology? J Immunol Res 2017; 7904821. doi: 10.1155/ 2017/ 7904821.
29. Ghareghani M, Reiter RJ, Zibara K et al. Latitude, vitamin D, melatonin, and gut microbiota act in concert to initiate multiple sclerosis: a new mechanistic pathway. Fron Immunol 2018; 9: 2484. doi: 10.3389/ fimmu.2018. 02484.
30. Riccio P, Rossano R. Diet, gut microbiota, and vitamins D + A in multiple sclerosis. Neurotherapeutics 2018; 15(1): 75– 91. doi: 10.1007/ s13311-017-0581-4.
31. Vieira AT, Fukumori C, Ferreira CM. New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases. Clin Transl Immunology 2016; 5(6): e87. doi: 10.1038/ cti.2016.38.
32. Saresella M, Mendozzi L, Rossi V et al. Immunological and clinical effect of diet modulation of the gut microbiome in multiple sclerosis patients: a pilot study. Front Immunol 2017; 8: 1391. doi: 10.3389/ fimmu.2017.01391.
33. Azad MA, Sarker M, Li T et al. Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int 2018; 9478630. doi: 10.1155/ 2018/ 9478630.
34. Evrensel A, Ceylan ME. Fecal microbiota transplantation and its usage in neuropsychiatric disorders. Clin Psychopharmacol Neurosci 2016; 14(3): 231– 237. doi: 10.9758/ cpn.2016. 14.3.231.
35. Forbes JD, Chen CY, Knox NC et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? Microbiome 2018; 6(1): 221. doi: 10.1186/ s40168-018-0603-4.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2019 Issue 2
Most read in this issue
- Intradural extramedullary spinal cord tumors
- Rapid diagnostics of chemokine CXCL13 in the cerebrospinal fluid of patients with neuroborreliosis
- Genetics of neuromuscular diseases
- Multiple sclerosis and pregnancy from a gynecologist‘s perspective – as sisted reproduction options