The Use of Optical Coherence Tomography in Multiple Sclerosis
Authors:
V. Matušková 1; J. Lízrová Preiningerová 2; D. Vysloužilová 1; M. Michalec 1; Z. Kasl 3; E. Vlková 1
Authors‘ workplace:
Oční klinika LF MU a FN Brno
1; Neurologická klinika a Centrum klinických neurověd, 1. LF UK a VFN v Praze
2; Oční klinika LF UK a FN Plzeň
3
Published in:
Cesk Slov Neurol N 2016; 79/112(1): 33-40
Category:
Review Article
doi:
https://doi.org/10.14735/amcsnn201633
Overview
Optical coherence tomography is fast, non-invasive and reproducible imaging technique that provides detailed measurements of retinal structures. Retinal pathology in multiple sclerosis (MS) includes consequences of optic neuritis as well as diffuse degenerative changes. Thinning of retinal nerve fiber layer, decrease in total macular volume and loss of retinal ganglion cell layer correlate with visual acuity, brain atrophy measures and cognitive changes. Anterior visual pathway became a model of neuroaxonal injury in MS and is used to test neuroprotective effects of new therapies. The paper provides an overview of the physics of optical coherence tomography and its application in MS.
Key words:
optical coherence tomography – multiple sclerosis – retinal nerve fibre layer – total macular volume
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Sources
1. Havrdová E. Roztroušená skleróza. 1. vyd. Praha: Mladá Fronta 2013.
2. The Optic Neuritis Study Group. Visual function5 years after optic neuritis: experience of the OpticNeuritis Treatment Trial. Arch Ophthalmol 1997; 115(12): 1545– 1552.
3. Ikuta F, Zimmerman HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 1976; 26(2): 26– 28.
4. Di Maggio G, Santangelo R, Guerrieri S, Bianco M, Ferrari L, Medaglini S et al. Optical coherence tomography and visual evoked potentials: which is more sensitive in multiple sclerosis? Mult Scler 2014; 20(10): 1342– 1347. doi: 10.1177/ 1352458514524293.
5. Abràmoff MD, Garvin MK, Sonka M. Retinal imaging and image analysis. IEEE Trans Med Imaging 2010; 3: 169– 208.
6. Scoles D, Gray D, Hunter J, Wolfe R, Gee B, Geng Y et al. In vivo imaging of retinal nerve fiber layer vasculature: imaging-histology comparison. BMC Ophthalmology 2009; 9: 1– 9. doi: 10.1186/ 1471-2415-13-76.
7. Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 2008; 27(1): 45– 88.
8. Tewarie P, Balk L, Costello F, Green A, Martin R, Schippling S et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One 2012; 7(4): e34823. doi: 10.1371/ journal.pone.0034823.
9. Schippling S, Balk LJ, Costello F, Albrecht P, Balcer L, Calabresi PA et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler 2015; 21(2): 163– 170. doi: 10.1177/ 1352458514538110.
10. Patel NB, Garcia B, Harwerth RS. Influence of anterior segment power on the scan path and RNFL thickness using SD-OCT. Invest Ophthalmol Vis Sci 2012; 53(9): 5788– 5798. doi: 10.1167/ iovs.12-9937.
11. Faghihi H, Hajizadeh F, Hashemi H, Khabazkhoob M. Agreement of two different spectral domain optical coherence tomography instruments for retinal nerve fiber layer measurements. J Ophthalmic Vis Res 2014; 9(1): 31– 37.
12. Sakata LM, Deleon-Ortega J, Sakata V, Girkin CA. Optical coherence tomography of the retina and optic nerve – a review. Clin Experiment Ophthalmol 2009; 37(1): 90– 99. doi: 10.1111/ j.1442-9071.2009.02015.x.
13. Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 1996; 6(3): 259– 274.
14. Trapp BD, Bo L, Mork S, Chang A. Pathogenesis of tissue injury in MS lesions. J Neuroimmunol 1999; 98(1): 49– 56.
15. Balk LJ, Petzold A. Current and future potential of retinal optical coherence tomography in multiple sclerosis with and without optic neuritis. Neurodegener Dis Manag 2014; 4(2): 165– 176. doi: 10.2217/ nmt.14.10.
16. Parisi V, Manni G, Spadaro M, Colacino G, Restuccia R, Marchi S et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 1999; 40(11): 2520– 2527.
17. Petzold A, de Boer JF, Schippling S, Vermersch P, Kardon R, Green A et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9(9): 921– 932. doi: 10.1016/ S1474-4422(10)70168-X.
18. Costello F, Coupland S, Hodge W, Lorello GR, Koroluk J, Pan YI et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59(6): 963–969.
19. Costello F, Hodge W, Pan YI, Eggenberger E, Coupland S, Kardon RH. Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography. Mult Scler 2008; 14(7): 893– 905. doi: 10.1177/ 1352458508091367.
20. Huang-Link YM, Al-Hawasi A, Lindehammar H. Acute optic neuritis: retinal ganglion cell loss precedes retinal nerve fiber thinning. Neurol Sci 2015; 36(4): 617– 620. doi: 10.1007/ s10072-014-1982-3.
21. Michalec M, Praksová P, Hladíková M, Matušková V, Vlková E, Štourač P et al. Pozorovanie hrúbky vrstvy nervových vlákien sietnice u pacientov so sklerózou multiplex pomocou optickej koherentnej tomografie. Cesk Slov Neurol N 2016; 78/ 112(1): 41–50.
22. Kupersmith MJ, Garvin MK, Wang JK, Durbin M, Kardon R. Retinal ganglion cell layer thinning within one month of presentation for optic neuritis. Mult Scler 2015: pii: 1352458515598020.
23. Green AJ, Cree BA. Distinctive retinal nerve fibre layer and vascular changes in neuromyelitis optica following optic neuritis. J Neurol Neurosurg Psychiatry 2009; 80(9): 1002– 1005. doi: 10.1136/ jnnp.2008.166207.
24. Syc SB, Saidha S, Newsome SD, Ratchford JN, Levy M, Ford E et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 2012; 135(2): 521– 533. doi: 10.1093/ brain/ awr264.
25. Watson GM, Keltner JL, Chin EK, Harvey D, Nguyen A, Park SS. Comparison of retinal nerve fiber layer and central macular thickness measurements among five different optical coherence tomography instruments in patients with multiple sclerosis and optic neuritis. J Neuroophthalmol 2011; 31(2): 110– 116. doi: 10.1097/ WNO.0b013e3181facbbd.
26. Shindler KS, Ventura E, Dutt M, Rostami A. Inflammatory demyelination induces axonal injury and retinal ganglion cell apoptosis in experimental optic neuritis. Exp Eye Res 2008; 87(3): 208– 213. doi: 10.1016/ j.exer.2008.05.017.
27. Saidha S, Syc SB, Ibrahim MA, Eckstein C, Warner CV, Farrell SK et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134(2): 518– 533. doi: 10.1093/ brain/ awq346.
28. Trip SA, Schlottmann PG, Jones SJ, Li WY, Garway-Heath DF, Thompson AJ et al. Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: evidence that axonal loss is a substrate of MRI-detected atrophy. Neuroimage 2006; 31(1): 286– 293.
29. Costello F, Hodge W, Pan YI, Eggenberger E, Freedman MS. Using retinal architecture to help characterize multiple sclerosis patients. Can J Ophthalmol 2010; 45(5): 520– 526. doi: 10.3129/ i10-063.
30. Gelfand JM, Goodin DS, Boscardin WJ, Nolan R, Cuneo A, Green AJ. Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PLoS One 2012; 7(5): e36847. doi: 10.1371/ journal.pone.0036847.
31. Costello F, Hodge W, Pan YI, Freedman M, DeMeulemeester C. Differences in retinal nerve fiber layer atrophy between multiple sclerosis subtypes. J Neurol Sci 2009; 281(1– 2): 74– 79. doi: 10.1016/ j.jns.2009.02.354.
32. Henderson AP, Trip SA, Schlottmann PG, Altmann DR, Garway-Heath DF, Plant GT et al. An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 2008; 131(1): 277– 287.
33. Dorr J, Wernecke KD, Bock M, Gaede G, Wuerfel JT, Pfueller CF et al. Association of retinal and macular damage with brain atrophy in multiple sclerosis. PLoS One 2011; 6(4): e18132. doi: 10.1371/ journal.pone.0018132.
34. Greenberg BM, Frohman E. Optical coherence tomography as a potential readout in clinical trials. Ther Adv Neurol Disord 2010; 3(3): 153– 160. doi: 10.1177/ 1756285610368890.
35. Frohman EM, Costello F, Stuve O, Calabresi P, Miller DH, Hickman SJ et al. Modeling axonal degeneration within the anterior visual system: implications for demonstrating neuroprotection in multiple sclerosis. Arch Neurol 2008; 65(1): 26– 35. doi: 10.1001/ archneurol.2007.10.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2016 Issue 1
Most read in this issue
- Investigation of the Retinal Nerve Fiber Layer in Multiple Sclerosis Using Spectral Domain Optical Coherence Tomography
- Complications of Cranioplasty after Decompressive Craniectomy
- Indications for Decompressive Craniectomy
- Sympathetic Skin Response in the Diagnosis of Small Fibre Neuropaty