Superior Temporal Sulcus and its Functions
Authors:
P. Haitová1ihash2ihash4ihash6ihash8 ,2 ,3 ,3 ,2 ,2
Authors‘ workplace:
Výzkumná skupina pro behaviorální a sociální neurovědy, Středoevropský technologický institut (CEITEC), MU, Brno
1; I. neurologická klinika LF MU a FN u sv. Anny v Brně
2; Výzkumná skupina Molekulární a funkční zobrazování, Středoevropský technologický institut (CEITEC), MU, Brno
3
Published in:
Cesk Slov Neurol N 2012; 75/108(2): 154-158
Category:
Review Article
Overview
Paper summarizes the current knowledge on superior temporal sulcus (STS) and its role in social cognition, biological movement perception, face perception, speech processing, polymodal integration and detection of rare stimuli. It emphasises its role in social behavior. In conclusion, STS plays role in particular at integrative and associative processing of stimuli, which are potentially behavioraly and socialy relevant.
Key words:
superior temporal sulcus – social behavior – biological movement perception – speech processing – polymodal integration – rare stimuli detection
Sources
1. Seltzer B, Pandya DN. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 1978; 149(1): 1–24.
2. Zheng ZZ, Wild C, Trang HP. Spatial organization of neurons in the superior temporal sulcus. J Neurosci 2010; 30(4): 1201–1203.
3. Seltzer B, Pandya DN. Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 1989; 281(1): 97–113.
4. Barbas H. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 1988; 276(3): 313–342.
5. Aggleton JP, Burton MJ, Passingham RE. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 1980; 190(2): 347–368.
6. Blatt GJ, Pandya DN, Rosene DL. Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: an anatomical and neurophysiological study. J Comp Neurol 2003; 466(2): 161–179.
7. Hein G, Knight RT. Superior temporal sulcus – it’s my area: or is it? J Cogn Neurosci 2008; 20(12): 2125–2136.
8. Allison T, Puce A, McCarthy G. Social perception from visual cues: Role of the STS region. Trends Cogn Sci 2000; 4(7): 267–278.
9. Pelphrey KA, Morris JP, McCarthy G. Grasping the intentions of others: the perceived intentionality of an action influences activity in the superior temporal sulcus during social perception. J Cogn Neusoci 2004; 16(10): 1706–1716.
10. Carrington SJ, Bailey AJ. Are there theory of mind regions in the brain? A review of the neuroimaging literature. Hum Brain Mapp 2009; 30(8): 2313–2335.
11. Pelphrey KA, Carter EJ. Brain mechanisms for social perception: lessons from autism and typical development. Ann N Y Acad Sci 2008; 1145: 283–299.
12. Materna S, Dicke PW, Thier P. The posterior superior temporal sulcus is involved in social communication not specific for the eyes. Neuropsychologia 2008; 46(11): 2759–2765.
13. Redcay E. The superior temporal sulcus performs a common function for social and speech perception: implications for the emergence of autism. Neurosci Biobehav Rev 2008; 32(1): 123–142.
14. Baron-Cohen S, Campbell R, Karmiloff-Smith A, Grant J, Walker J. Are children with autism blind to the mentalistic significance of the eyes? Br J Dev Psychol 1995; 13(4): 379–398.
15. Castelli F, Frith C, Happé F, Frith U. Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 2002; 125(8): 1839–1849.
16. Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH. Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 2004; 23(1): 364–369.
17. Cross ES, Hamilton AF, Grafton ST. Building a motor simulation de novo: observation of dance by dancers. Neuroimage 2006; 31(3): 1257–1267.
18. Puce A, Perrett D. Electrophysiology and brain imaging of biological motion. Philos Trans R Soc Lond B Biol Sci 2003; 358(1431): 435–45.
19. Troje NF, Westhoff C. The inversion effect in biological motion perception: Evidence for a “life detector”? Curr Biol 2006; 16(8): 821–824.
20. Van Overwalle F, Baetens K. Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 2009; 48(3): 564–584.
21. Grezes J, Fonlupt P, Bertenthal B, Delon-Martin C, Segebarth C, Decety J. Does perception of biological motion rely on specific brain regions? Neuroimage 2001; 13(5): 775–785.
22. Thompson JC, Clarke M, Stewart T, Puce A. Configural processing of biological motion in human superior temporal sulcus. J Neurosci 2005; 25(36): 9059–9066.
23. Beauchamp MS, Lee KE, Haxby JV, Martin A. Parallel visual motion processing streams for manipulable objects and human movements. Neuron 2002; 34(1): 149–159.
24. Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G et al. Brain areas involved in perception of biological motion. J Cogn Neurosci 2000; 12(5): 711–720.
25. Jellema T, Baker CI, Wicker B, Perrett DI. Neural representation for the perception of the intentionality of hand actions. Brain Cogn 2000; 44(2): 280–302.
26. Orban GA, Saunders R, Vandenbussche E. Lesions of the superior temporal cortical motion areas impair speed discrimination in the macaque monkey. Eur J Neurosci 1995; 7(11): 2261–2276.
27. Pasternak T, Merigan WH. Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb Cortex 1994; 4(3): 247–259.
28. Lauwers K, Saunders R, Vogels R, Vandenbussche E, Orban GA. Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion areas. J Comp Neurol 2000; 420(4): 539–557.
29. Akiyama T, Kato M, Muramatsu T, Saito F, Nakach R, Kashima H. A deficit in discriminating gaze direction in a case with right superior temporal gyrus lesion. Neuropsychologia 2006; 44(2): 161–170.
30. Yamasaki DS, Wurtz RH. Recovery of function after lesions In the superior temporal sulcus in the monkey. J Neurophysiol 1991; 66(3): 651–673.
31. Campbell R, Heywood CA, Cowey A, Regard M, Landis T. Sensitivity to eye gaze in prosopagnosic patients and monkeys with superior temporal sulcus ablation. Neuropsychologia 1990; 28(11): 1123–1142.
32. Ishai A, Schmidt CF, Boesiger P. Face perception is mediated by a distributed cortical network. Brain Res Bull 2005; 67(1–2): 87–93.
33. Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci 2000; 4(6): 223–233.
34. Hickok G. The functional neuroanatomy of language. Phys Life Rev 2009; 6(3): 121–143.
35. Price CJ. The anatomy of language: contributions from functional neuroimaging. J Anat 2000; 197(3): 335–359.
36. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature 2000; 403(6767): 309–312.
37. Ethofer T, Erb M, Anders S, Wiethoff S, Herbert C, Saur R et al. Effects of prosodic emotional intensity on activation of associative auditory cortex. Neuroreport 2006; 17(3): 249–253.
38. Campbell R, MacSweeney M, Surguladze S, Calvert G, McGuire P, Suckling J et al. Cortical substrates for the perception of face actions: an fMRI study of the specificity of activation for seen speech and for meaningless lower-face acts (gurning). Brain Res Cogn 2001; 12(2): 233–243.
39. Okada K, Hickok G. Left posterior auditory-related cortices participate both in speech perception and speech production: neural overlap revealed by fMRI. Brain Lang 2006; 98(1): 112–117.
40. Beauchamp MS, Lee KE, Argall BD, Martin A. Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 2004; 41(5): 809–823.
41. Calvert GA. Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cortex 2001; 11(12): 1110–1123.
42. Beauchamp MS. See me, hear me, touch me: multisensory integration in lateral occipital – temporal cortex. Curr Opin Neurobiol 2005; 15(2): 145–153.
43. Stevenson RA, James TW. Audiovisual integration in human superior temporal sulcus: inverse effectiveness and the neural processing of speech and object recognition. Neuroimage 2009; 44(3): 1210–1223.
44. Campanella S, Belin P. Integrating face and voice in person perception. Trends Cogn Sci 2007; 11(12): 535–543.
45. Kreifelts B, Ethofer T, Grodd W, Erb M, Wildgruber D. Audiovisual integration of emotional signals in voice and face: An event-related fMRI study. Neuroimage 2007; 37(4): 1445–1456.
46. Beauchamp MS, Yasar NE, Frye RE, Ro T. Touch, sound and vision in human superior temporal sulcus. Neuroimage 2008; 41(3): 1011–1020.
47. Clarke S, Bellmann A, Meuli RA, Assal G, Steck AJ. Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways. Neuropsychologia 2000; 38(6): 797–807.
48. Saygin AP, Dick F, Wilson W, Dronkers F, Bates E. Neural resources for processing language and environmental sounds: evidence from aphasia. Brain 2003; 126(4): 928–945.
49. Opitz B, Mecklinger A, Friederici AD, von Cramon DY. The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. Cereb Cortex 1999; 9(4): 379–391.
50. Ngan ET, Vouloumanos A, Cairo TA, Laurens KR, Bates AT, Anderson CM et al. Abnormal processing of speech during oddball target detection in schizophrenia. Neuroimage 2003; 20(2): 889–897.
51. Stevens MC, Pearlson GD, Kiehl KA. An FMRI auditory oddball study of combined-subtype attention deficit hyperactivity disorder. Am J Psychiatry 2007; 1461(11): 1737–1749.
52. Brázdil M, Mikl M, Marecek R, Krupa P, Rektor I. Effective connectivity in target stimulus processing: a dynamic causal modeling study of visual oddball task. Neuroimage 2007; 35(2): 827–835.
53. Halgren E, Marinkovic K, Chauvel P. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol 1998; 106(2): 156–164.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2012 Issue 2
Most read in this issue
- The Use of Percutaneous Endoscopic Gastrostomy – Overview of Indications, Description of the Technique and Current Trends in Neurology
- Postural Instability, Gait Disorders and Falls in Parkinson’s Disease
- The Algorithm of CSF Examination according to the Reccomendation of the Committee of CSF and Neuroimmunology of the Czech Neurological Society
- Obstructive Sleep Apnoe and CPAP – is it Reasonable to Solve Nasal Patency?