#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cognitive Evoked Potentials


Authors: Prof. MUDr. Martin Bareš, Ph.D.
Authors‘ workplace: I. neurologická klinika, LF MU a FN u sv. Anny v Brně
Published in: Cesk Slov Neurol N 2011; 74/107(5): 508-517
Category: Minimonography

Overview

Electrical brain activity provides objective information about human brain function. Of parti­cular interest are cognitive, or event-related, potentials (ERPs), including contingent negative variation (CNV), P300 or P3, and the complex of middle- and long-latency evoked potentials, mismatch negativity (MMN) and bereitschaftspotential (BP), all of which are classified as slow cognitive potentials. Cognitive evoked potentials are considered the results of the activities of the complex neuronal networks that are responsible for detection and processing of new inputs, for discrimination, and for mental processing. Slow cognitive potentials are related to mental activities that are conscious as well as unconscious. Among the electrophysiological phenomena that can be recorded, ERPs are closely related to the central nervous activities of daily living. The author provides an overview of cognitive evoked potentials, the methodo­logy and recording issues associated with them, distribution in terms of scalp and intrace­rebral locations, and clinical outcome.

Key words:
contingent negative variation – bereit­schaftspotential – P3 wave – cognitive evoked potential – mismatch negativity


Sources

1. Stejskal L. Mozkové odpovědi na zaměřené události: ERP. In: Stejskal L (ed). Evokované odpovědi a jejich klinické využití. Praha: Praha Publishing 1993: 355–358.

2. Rektor I. Dlouholatentní evokované potenciály a long loop reflex. In: Kaňovský P, Dufek J (eds). Evokované potenciály v klinické praxi. Brno: IDPVZ 2000: 152–153.

3. Bareš M. Kontingentní negativní variace (CNV) - teoretické aspekty a praktické použití v neurovědách a psychiatrii. Psychiatrie 2001; 5(3): 161–167.

4. Bareš M. Neurofyziologické vyšetřovací metody v diagnostice extrapyramidových syndromů. In: Rektor I et al (eds). Centrální poruchy motoriky a demence. Plzeň: Adéla 2003: 94–114.

5. Walter WG. The contingent negative variation: an electro-cortical sign of sensori-motor reflex association in man. Prog Brain Res 168; 22: 364–377.

6. Brunia CH. Neural aspects of anticipatory behavior. Acta Psychol (Amst) 1999; 101(2–3): 213–242.

7. Lai C, Ikeda A, Terada K, Nagamine T, Honda M, Xu X et al. Event-related potentials associated with judgement: comparison of S1- and S2- choice conditions in a contingent negative variation (CNV) paradigm. J Clin Neurophysiol 1997; 14(5): 394–405.

8. Lamarche M, Louvel J, Buser P, Rektor I. Intracerebral recordings of slow potentials in a contingent negative variation paradigm: an exploration in epileptic patients. Electroencephalogr Clin Neurophysiol 1995; 95(4): 268–276.

9. Rektor I, Louvel J, Lamarche M. Intracerebral recording of potentials accompanying simple limb movements: a SEEG study in epileptic patients. Electroencephalogr Clin Neurophysiol 1998; 107(4): 277–286.

10. Kornhuber HH, Deecke L. Hirnpotentialänderungen bei willkürbewegungen und passiven bewegungen des menschen. Bereitschaftspotential und reafferente potentiale. Pflugers Arch Gesamte Physiol Menschen Tiere 1965; 284: 1–17.

11. Grünewald G, Grünewald-Zuberbier E, Netz J, Hömberg V, Sander G. Relationships between the late component of the contingent negative variation and the bereitschaftspotential. Electroencephalogr Clin Neurophysiol 1979; 46(5): 538–545.

12. Ikeda A, Shibasaki H, Kaji R, Terada K, Nagamine T, Honda M et al. Dissociation between contingent negative variation (CNV) and Bereitschaftspotential (BP) in patients with parkinsonism. Electroencephalogr Clin Neurophysiol 1997; 102(2): 142–151.

13. Brunia CH, van Boxtel GJ. Wait and see. Int J Psychophysiol 2001; 43(1): 59–75.

14. Deecke L. Clinical neurophysiology of Parkinson’s disease. Bereitschaftspotential and contingent negative variation. Adv Neurol 2001; 86: 257–271.

15. Ikeda A, Shibasaki H, Kaji R, Terada K, Nagamine T, Honda M et al. Abnormal sensorimotor integration in writer’s cramp: study of contingent negative variation. Mov Disord 1996; 11(6): 683–690.

16. Bareš M, Rektor I, Kaňovský P, Streitová H. Intracerebral distribution of cognitive operations. A contingent negative variation depth electrode study. Homeostasis 2000; 40(3–4): 91–93.

17. Bareš M. Parallel processing of cognitive information in the frontal cortex and the basal ganglia. Homeostasis 2001; 41 (1–2): 55–57.

18. Bareš M, Rektor I. Post-stimulus auditory and visual evoked potentials in a cognitive paradigm. SEEG recordings from the temporal cortex and basal ganglia in patients with epilepsy. Homeostasis 2001; 41(6): 256–257.

19. Smith JL, Douglas KM. On the use of event-related potentials to auditory stimuli in the Go/NoGo task. Psychiatr Res 2011; 193(3): 177–181.

20. Larson MJ, Perlstein WM. Awareness of deficits and error processing after traumatic brain injury. Neuroreport 2009; 20(16): 1486–1490.

21. Simson R, Vaughan HG jr, Ritter W. The scalp topography of potentials in auditory and visual go/nogo tasks. Electroencephalogr Clin Neurophysiol 1977; 43(6): 864–875.

22. Brunia CH. Waiting in readiness: gating in attention and motor preparation. Psychophysiology 1993; 30(4): 327–339.

23. Brunia CH, Damen EJP. Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroencephalogr Clin Neurophysiol 1988; 69(3): 234–243.

24. Yasuda K, Ray LB, Cote KA. Anticipatory attention during sleep onset period. Conscious Cogn 2011; 20(3): 912–919.

25. Ansari TL, Derakshan N. The neural correlates of cognitive effort in anxiety: effects on processing efficiency. Biol Psychol 2011; 86(3): 337–348.

26. Horváth J, Winkler I. Distraction in a continuous--stimulation detection task. Biol Psych 2010; 83(3): 229–238.

27. Babiloni C, Brancucci A, Arendt-Nielsen L, Del Percio C, Babiloni F, Pascual-Marqui RD et al. Cortical sensorimotor interactions during the expectancy of a go/no-go task: effects of painful stimuli. Behav Neurosci 2004; 118(5): 925–935.

28. Dirnberger G, Lang W, Lindinger G. Differential effects of age and executive functions on the resolution of the contingent negative variation: a reexamination of the frontal aging theory. Age (Dord) 2010; 32(3): 323–335.

29. Dincheva E, Piperova-Dalbokova D, Kolev P. Contingent negative variation (CNV) and the distraction effect in extraverts and introverts. Pers Individ Differences 1984; 5: 757–761.

30. Lolas F, de Andraca I. Neuroticism, extraversion and slow brain potentials. Neuropsychobiology 1977; 3(1): 12–22.

31. De Tommaso M, Difruscolo O, Schiruicchio V, Specchio N, Livrea P. Abnormalities of the contingent negative variation in Huntington´s disease: correlations with clinical features. J Neurol Sci 2007; 254(1–2): 84–89.

32. Kofler B, Harrer G, Ladurner G. Contingent negative variation (CNV) differences between cerebrovascular patients with and without dementia. Arch Gerontol Geriatr 1988; 7(4): 311–318.

33. Kaji R, Ikeda A, Ikeda T, Kubori T, Mezaki T, Kohara N et al. Physiological study of cervical dystonia. Task-specific abnormality in contingent negative varia­tion. Brain 1995; 118(2): 511–522.

34. Gerschlager W, Alesch F, Cunnington R, Deecke L, Dirnberger G, Endl W et al. Bilateral subthalamic nucleus stimulation improves frontal cortex function in Parkinson‘s disease. An electrophysiological study of the contingent negative variation. Brain 1999; 122(12): 2365–2375.

35. Cunnington R, Lalouschek W, Dirnberger G, Walla P, Lindinger G, Asenbaum S et al. A medial to lateral shift in pre-movement cortical activity in hemi-Parkinson‘s disease. Clin Neurophysiol 2001; 112(4): 608–618.

36. Ito J, Kitagawa J. Performance monitoring and error processing during a lexical decision task in patients with Parkinson‘s disease. J Geriatr Psychiatry Neurol 2006; 19(1): 46–54.

37. Linssen AM, Vuurman EF, Sambeth A, Nave S, Spooren W, Vargas G et al. Contingent negative variation as a dopaminergic biomarker: evidence from dose-related effects of methylphenidate. Psychopharmacology (Berl). In press 2011.

38. Oishi M, Mochizuki Y, Du C, Takasu T. Contingent negative variation and movement-related cortical potentials in parkinsonism. Electroencephalogr Clin Neurophysiol 1995; 95(5): 346–349.

39. Drake ME jr, Weate SJ, Newell SA. Contingent negative variation in epilepsy. Seizure 1997; 6(4): 297–301.

40. Maertens de Noordhout A, Timsit-Berthier M, Timsit M, Schoenen J. Contingent negative variation in headache. Ann Neurol 1986; 19(1): 78–80.

41. Siniatchkin M, Gerber-von Müller G, Darabaneanu S, Petermann F, Stephani U, Gerber WD. Behavioural treatment programme contributes to normalization of contingent negative variation in children with migraine. Cephalalgia 2011; 31(5): 562–572.

42. Schoenen J, Maertens de Noordhout A, Timsit--Berthier M, Timsit M. Contingent negative variation and efficacy of betablocking agents in migraine. Cephalagia 1986; 6(4): 229–233.

43. Gonzalez-Rosa JJ, Vazquez-Marrufo M, Vaquero E, Duque P, Borges M, Gomez-Gonzalez CM et al. Cluster analysis of behavioural and event-related potentials during a contingent negative variation paradigm in remitting-relapsing and benign forms of multiple sclerosis. BMC Neurol 2011; 11: 64.

44. Borda RP. The effect of altered drive states on the contingent negative variation (CNV) in rhesus monkey. Electroencephalogr Clin Neurophysiol 1970; 29(2): 173–180.

45. Rebert CS. Cortical and subcortical slow potentials in the monkeys brain during a preparatory interval. Electroencephalogr Clin Neurophysiol 1972; 33(4): 389–402.

46. Rebert CS, Henry MB, Donovan WJ. Slow potentials in substantia Nigeria and other regions of monkey brain during a cued reaction time task. In: McCallum WC, Zappoli R, Denoth F (eds). Cerebral Psychophy­siology: Studies in event-related potentials and behavior. Amsterdam: Elsevier. Electroencephalogr Clin Neurophysiol 1986; Suppl 38: 343–392.

47. Rebert CS, Matteucci M, Diehl J, Hennessy M, Bauer H. Cerebral physiology of preparatory set. Int J Psychophysiol 1989; 7(2–4): 368–369.

48. Bareš M, Rektor I. Basal ganglia involvement in cognitive and sensory processing. A SEEG CNV study in human subjects. Clin Neurophysiol 2001; 112(11): 2022–2030.

49. Bareš M. Kortikální a subkortikální distribuce senzomotorických a kognitivních procesů. Dizertační doktorandská práce. Brno: Masarykova Univerzita Brno 2002.

50. Bareš M, Rektor I, Kaňovský P, Streitová H. Cortical and subcortical distribution of sensory and cognitive operations. A contingent negative variation SEEG study. Clin Neurophysiol 2003; 114(12): 2447–2460.

51. Bareš M, Nestrašil I, Rektor I. The effect of response type (motor output versus mental counting) on the intracerebral distribution of the slow cortical potentials in an externally cued (CNV) paradigm. Brain Res Bull 2007; 71(4): 428–435.

52. Rektor I, Kanovsky P, Bares M, Louvel J, Lamarche M. Evoked potentials, ERP, CNV, readiness potential and movement accompanying potential recorded from the posterior thalamus in human subjects. A SEEG study. Neurophysiol Clin/Clin Neurophysiol 2001; 31(4): 253–261.

53. Brázdil M, Dobšík M, Mikl M, Hluštík P, Daniel P, Pažourková M et al. Combined event-related fMRI and intracerebral ERP study of an auditory oddball task. Neuroimage 2005; 26(1): 285–293.

54. Libet B. Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav Brain Sci 1985; 8: 529–566.

55. Fève A, Bathien N, Rondot P. Evolution des potentiels corticaux lies au movement chez les patients parkinsoniens, avant et apres traitement par la levodopa. Neurophysiol Clin 1991; 21)2): 105–119.

56. Rektor I, Bareš M, Kaňovský P, Kukleta M. Intracerebral recording of readiness potential induced by a complex motor task. Mov Disord 2001; 16(4): 698–704.

57. Lu MK, Arai N, Tsai CH, Ziemann U. Movement related cortical potentials of cued versus self-initiated movements: Double dissociated modulation by dorsal premotor cortex versus supplementary motor area rTMS. Brain Mapp. In print 2011.

58. Matsuhashi M, Hallett M. The timing of the conscious intention to move. Eur J Neurosci 2008; 28(11): 2344–2351.

59. Bortoletto M, Cook A, Cunnington R. Motor timing and the preparation for sequential actions. Brain Cogn 2011; 75(2): 196–204.

60. Ikeda A, Yazawa S, Kunieda T, Ohara S, Terada K, Mikuni N et al. Cognitive motor control in human pre-supplementary motor area studied by subdural recording of discrimination/selection-related poten­tials. Brain 1999; 122(5): 915–931.

61. Lee BI, Lüders H, Lesser RP, Dinner DS, Morris HH. Cortical potentials related to voluntary and passive finger movements recorded from subdural electrodes in humans. Ann Neurol 1986; 20(1): 32–37.

62. Shima K, Aya H, Inase M K, Mushiake, Aizawa H, Tanji J. Two movement-related foci in the primate cingulate cortex observed in signal triggered and self-paced forelimb movements. J Neurophysiol 1991; 65(2): 188–202.

63. Rektor I, Fève A, Buser P, Bathien N, Lamarche M. Intracerebral recording of movement related readiness potentials: an exploration in epileptic patients. Electroenceph Clin Neurophysiol 1994; 90)4): 273–283.

64. Yazawa S, Ikeda A, Kunieda T, Ohara S, Mima T, Nagamine T et al. Human presupplementary motor area is active before voluntary movement: subdural recording of Bereitschaftspotential from medial frontal cortex. Exp Brain Res 2000; 131(2): 165–177.

65. McCallum WC, Papakostopoulos D, Gombi R, Winter AL, Cooper R, Griffith HB. Event related slow potential changes in human brain stem. Nature 1973; 242(5398): 465–467.

66. McCallum WC. Behavioural and clinical correlates of brain slow potential changes. Proc R Soc Med 1975; 68)1): 3–6.

67. Lu MK, Chang FC, Yang YW, Lin YC, Lee CC, Tsai CH. Abnormal movement-related cortical potential in patients with subcortical heterotopia. Brain Dev 2006; 28(9): 560–565.

68. Rektor I, Bareš M, Kubová D. Movement related potentials in the basal ganglia. A SEEG readiness potential study. Clin Neurophysiol 2001; 112(11): 2146–2153.

69. Rektor I, Bareš M, Brázdil M, Kaňovský P, Rektorová I, Sochurková D et al. Cognitive- and movement-related potentials recorded in the human basal ganglia. Mov Disord 2005; 20(5): 562–568.

70. Rektor I, Bareš M, Kaňovský P, Brázdil M, Klajblová H, Streitová H et al. Cognitive potentials in the basal ganglia-frontocortical circuits. An intracerebral recording study. Exp Brain Res 2004; 158(3): 289–301.

71. Leuthold H, Schröter H. Motor programming of finger sequences of different complexity. Biol Psychol 2011; 86(1): 57–64.

72. Fleming SM, Mars RB, Gladwin TE, Haggard P. When the brain changes its mind: flexibility of action selection in instructed and free choices. Cereb Cortex 2009; 19(10): 2352–2360.

73. Paul I, Wearden J, Bannier D, Gontier E, Le Dantec C, Rebaï M. Making decisions about time: Event-related potentials and judgements about the equality of durations. Biol Psychol. In press 2011.

74. Dick JPR, Rothwell JC, Day BL, Cantello R, Buruma O, Gioux M et al. The Bereitschaftspotential is abnormal in Parkinson’s disease. Brain 1989; 112: 233–344.

75. Vidailhet M, Atchison P, Stocchi F, Thompson PD, Rothwell JC, Marsden CD. The Bereitschaftspotential preceding stepping in patients with isolated gait ignition failure. Mov Disord 1995; 10(1): 18–21.

76. Gironell A, Rodríguez-Fornells A, Kulisevsky J, Pascual B, Barbanoj M, Otermin P. Motor circuitry re-organization after pallidotomy in Parkinson disease: a neurophysiological study of the bereitschaftspotential, contingent negative variation, and N30. J Clin Neurophysiol 2002; 19(6): 553–561.

77. Lu MK, Jung P, Bliem B, Shih HT, Hseu YT, Yang YW, et al. The Bereitschaftspotential in essential tremor. Clin Neurophysiol 2010; 121(4): 622–630.

78. Desmedt JE, Debecker J, Manil J. Mise en evidence d´un signe électrique cerebral associé a la detection par le sujet d´un stimulus sensoriel tactile. Bull Acad R med Belg 1965; 5(11): 887–936.

79. Sutton S, Baren M, Zubin J, John ER. Evoked potentials correlates of stimulus uncertainty. Science 1965; 150(700): 1187–1188.

80. Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Näätänen R et al. Event-related poten­tials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 2009; 120(11): 1883–1908.

81. Evans DW, Maliken A. Cortical activity and children‘s rituals, habits and other repetitive behavior: A visual P300 study. Behav Brain Res 2011; 224(1): 174–179.

82. Shin J. The interrelationship between movement and cognition: theta rhythm and the P300 event-related potential. Hippocampus 2011; 21(7): 744–752.

83. Friedman D, Simpson GV. ERP amplitude and scalp distribution to target and novel events: Effects of temporal order in young, middle-aged and older adults. Cogn Brain Res 1994; 2: 49–63.

84. Halgren E, Baudena P, Clarke JM, Heit G, Liégeois C, Chauvel P et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli: I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 1995; 94(4): 191–220.

85. Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K, Devaux B et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli: II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 1995; 94(3): 229–250.

86. Kiss I, Dashieff RM, Lordeon P. A parieto-occipital generator for P300: evidence from human intracranial recordings. Intern J Neurosci 1989; 49(1–2): 133–139.

87. Smith ME, Halgren E, Sokolik M, Baudena P, Musolino A, Liégeois-Chauvel C et al. The intracranial topography of P3 event-related potential elicited during auditory oddball. Electroencephal Clin Neurophysiol 1990; 76(3): 235–248.

88. Näätänen R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 1990; 13: 201–288.

89. Todd J, Finch B, Smith E, Budd TW, Schall U. Temporal processing ability is related to ear-asymmetry for detecting time cues in sound: a mismatch negativity (MMN) study. Neuropsychologia 2011; 49(1): 69–82.

90. Baudena P, Halgren E, Heit G, Clarke JM. Intracerebral potentials to rare target and distractor auditory and visual stimuli: III. Frontal cortex. Electroencephalogr Clin Neurophysiol 1995; 94(4): 251–254.

91. Clarke JM, Halgren E, Chauvel P. Intracranial ERPs in humans during a lateralized visual oddball task: I. Occipital and peri-Rolandic recording. Clin Neurophysiol 1999; 110(7): 1210–1225.

92. Clarke JM, Halgren E, Chauvel P. Intracranial ERPs in humans during a lateralized visual oddball task: II. Temporal, parietal and frontal recordings. Clin Neuro­physiol 1999; 110(7): 1226–1244.

93. Brázdil M, Rektor I, Dufek M, Daniel P, Jurák P, Kuba R. The role of frontal and temporal lobes in visual discrimination task- depth ERP studies. Neurophysiol Clin 1999; 29(4): 339–350.

94. Kaňovský P, Streitová H, Klajblová H, Bareš M, Daniel P, Rektor I. The impact of motor activity on intracerebral ERPs: P3 latency variability in modified auditory odd-ball paradigms involving a motor task. Neurophy­siol Clin/Clin Neurophysiol 2003; 33(4): 159–168.

95. Rektor I, Kaňovský P, Bareš M, Brázdil M, Streitová H, Klajblová H et al. A SEEG study of ERP in motor and premotor cortices and in the basal ganglia. Clin Neurophysiol 2003; 114(3): 463–471.

96. Rektor I, Brázdil M, Nestrašil I, Bareš M, Daniel P. Modifications of cognitive and motor tasks affect the occurrence of event-related potentials in the human cortex. Eur J Neurosci 2007; 26(5): 1371–1313.

97. Hamano T, Lüders HO, Ikeda A, Collura T, Comair YG, Shibasaki H. The cortical generators of the contingent negative variation in humans: a study with subdural electrodes. Electroencephalogr Clin Neurophysiol 1997; 104)3): 257–268.

98. Wascher E, Verleger R, Jaskowski P, Waschkuhn B. Preparation for action: an ERP study about two tasks provoking variability in response speed. Psychophysiology 1996; 33(3): 262–272.

99. Wascher E, Verleger R, Vieregge P, Jaskowski P, Koch S, Kömpf D. Responses to cued signals in Parkinson’s disease. Distinguishing between disorders of cognition and of activation. Brain 1997; 120(8): 1355–1375.

100. Ikeda A, Lüders HO, Collura TF, Burgess RC, Morris HH, Hamano T et al. Subdural potentials at orbitofrontal and mesial prefrontal areas accompanying anticipation and decision making in humans: a comparison with Bereitschaftspotential. Electroencephalogr Clin Neurophysiol 1996; 98)3): 206–212.

101. Pülvermuller F, Lutzenberger W, Müller V, Mohr B, Dichgans J, Birbaumer N. P3 and contingent negative variation in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 1996; 98(4): 456–467.

102. Pirtosek Z, Jahanshahi M, Barrett G, Lees AJ. Attention and cognition in bradykinetic-rigid syndromes: an event-related potential study. Ann Neurol 2001; 50(5): 567–573.

103. Bonanni L, Franciotti R, Onofrj V, Anzellotti F, Mancino E, Monaco D, wt al. Revisiting P300 cognitive studies for dementia diagnosis: Early dementia with Lewy bodies (DLB) and Alzheimer disease (AD). Neurophysiol Clin 2010; 40(5–6): 255–265.

104. Katsarou Z, Bostantjopoulou S, Kimiskidis V, Rossopoulos E, Kazis A. Auditory event-related potentials in Parkinson‘s disease in relation to cognitive ability. Peccept Mot Skills 2004; 98(3 Pt 2): 1441–1448.

105. Jiraskova N, Kuba M, Kremlacek J, Rozsival P. Normal sensory and absent cognitive electrophysiological responses in functional visual loss following chemical eye burn. Doc Ophthalmol 2011; 123(1): 51–57.

106. Brázdil M, Babiloni C, Roman R, Daniel P, Bareš M, Rektor I, et al. Directional functional coupling of cerebral rhythms between anterior cingulate and dorsolateral prefrontal areas during rare stimuli: A directed transfer function analysis of human depth EEG signal. Hum Brain Mapp 2009; 30(1): 138–146.

107. Brázdil M, Roman R, Urbánek T, Chládek J, Špok D, Mareček R et al. Neural correlates of affective picture processing – a depth ERP study. Neuroimage 2009; 47(1): 376–383.

108. Brázdil M, Mikl M, Mareček R, Krupa P, Rektor I. Effective connectivity in target stimulus processing: a dynamic causal modeling study of visual oddball task. Neuroimage 2007; 35(2): 827–835.

109. Babiloni C, Bares M, Vecchio F, Brázdil M, Jurak P, Moretti DV et al. Synchronization of gamma oscillations increases functional connectivity of human hippocampus and inferior middle temporal cortex during repetitive visuomotor events. Eur J Neurosci 2004; 19(11): 3088–3098.

110. Babiloni C, Vecchio F, Bares M, Brázdil M, Nestrasil I, Eusebi F et al. Functional coupling between anterior prefrontal cortex (BA10) and hand muscle contraction during intentional and imitative motor acts. Neuroimage 2008; 39(3): 1314–1323.

111. Kaňovský P, Bareš M, Rektor I. The selective gating of the N30 cortical component of the somatosensory evoked potentials of median nerve is different in the mesial and dorsolateral frontal cortex: evidence from intracerebral recordings. Clin Neurophysiol 2003; 114(6): 981–991.

112. Hoegl T, Heinrich H, Albrecht B, Diruf M, Moll GH, Kratz O. Interplay of neuronal processes during response inhibition: Results from a combined event--related potentials (ERPs)/transcranial magnetic stimulation (TMS) study on methylphenidate. Int J Psychophysiol 2011; 81(2): 99–106.

113. Kenemans JL, Kähkönen S. How human electrophysiology informs psychopharmacology: from bottom-up driven processing to top-down control. Neuropsychopharmacology 2011; 36(1): 26–51.

114. Polezzi D, Sartori G, Rumiati R, Vidotto G, Daum I. Brain correlates of risky decision-making. Neuroimage 2010; 49(2): 1886–1894.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 5

2011 Issue 5

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#