#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Comparison of in vivo and in vitro measurements of flow parameters in carotid stenosis – pilot results of hemodynamic phantom testing


Authors: D. Školoudík 1,2,3;  T. Hrbáč;  R. Matejka 4,5;  S. Forostyak 4;  J. Hofmanová 4;  D. Netuka 6;  P. Kešnerová 7;  T. Belšan 8;  A. Školoudík 9
Authors‘ workplace: Centrum vědy a výzkumu, Fakulta zdravotnických věd, UPOL, Olomouc 1;  Neurochirurgická klinika FN Ostrava 2;  Centrum zdravotnického výzkumu, LF OU, Ostrava 3;  PrimeCell Bioscience Inc., Ostrava 4;  Katedra biomedicínské techniky, Fakulta biomedicínského inženýrství, ČVUT v Praze, Kladno 5;  Neurochirurgická klinika ÚVN – VFN Praha 6;  Neurologická klinika, 2. LF UK a FN Motol, Praha 7;  Radiologická klinika ÚVN – VFN Praha 8;  Matiční gymnázium, Ostrava 9
Published in: Cesk Slov Neurol N 2020; 83/116(6): 627-632
Category: Original Paper
doi: https://doi.org/10.48095/cccsnn2020627

Overview

Aim: Atherosclerotic carotid artery disease is one of the most common causes of ischemic stroke. As the study of the progression and development of instability of atherosclerotic plaques in vivo is limited, data from in vitro studies can be used to clarify these processes. For these reasons, the authors constructed a hemodynamic model with the possibility of inserting the atherosclerotic plaque removed during carotid endarterectomy for the study of hemodynamics in the carotid bifurcation. The aim of the study was to determine whether it is possible to simulate flow parameters in the area of carotid bifurcation stenosis in the hemodynamic model comparable to the in vivo state before performing carotid endarterectomy. Intact atherosclerotic plaque was removed from the carotid artery during endarterectomy and inserted into a hemodynamic model.

Methods: The study included 13 patients with carotid stenosis ≥ 50% indicated for carotid endarterectomy. The atherosclerotic plaques were removed from the carotid artery during carotid endarterectomy and inserted into the hemodynamic model.

Results: The mean differences in the measured maximum and end-diastolic velocities in the area of stenosis in vivo before carotid endarterectomy and in vitro in the hemodynamic model after insertion of the removed atherosclerotic plaque were 18.9 cm/s (7.0%) and 8.2 cm/s (11.1%), respectively.

Conclusion: The study confirmed the functionality of the hemodynamic model and its possible use for studying the hemodynamic changes in carotid stenosis area.

Keywords:

carotid artery – Hemodynamics – model – endarterectomy – Atherosclerosis – plaque


Sources

1. Celermajer DS, Chow CK, Marijon E et al. Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection. J Am Coll Cardiol 2012; 60 (14): 1207–1216. doi: org/10.1016/j.jacc.2012.03.074.

2. Kalvach P (ed). Mozkové ischemie a hemoragie. 3. vyd. Praha: Grada 2010.

3. Benjamin EJ, Blaha MJ, Chiuve SE et al. Heart disease and stroke statistics – 2017 update: a report from the American Heart Association. Circulation 2017; 135 (10): e146–603. doi: 10.1161/CIR.0000000000000485.

4. Touzé E. Natural history of asymptomatic carotid artery stenosis. Rev Neurol (Paris) 2008; 164 (10): 793–800. doi: 10.1016/ j.neurol.2008.07.005.

5. Kešnerová P, Viszlayová D, Školoudík D. Detekce nestabilního karotického plátu v prevenci ischemické cévní mozkové příhody. Cesk Slov Neurol N 2018; 81 (4): 378–391. doi: 10.14735/amcsnn2018378.

6. Roubec M, Školoudík D, Hrbáč T et al. Krvácení do ate­rosklerotického plátu u symptomatické a asymptomatické progredující stenózy vnitřní karotidy – pilotní studie. Cesk Slov Neurol N 2019; 82 (6): 638–643. doi: 10.14735/amcsnn2019638.

7. Školoudík D, Škoda O, Bar M et al. Neurosonologie. Praha: Galén 2003.

8. Charvát F, Vrána J, Netuka D et al. Charakteristika atero­sklerotického plátu a riziko mozkové ischemie při stentování vnitřní karotidy. Cesk Slov Neurol N 2020; 83 (1): 84–94. doi: 10.14735/amcsnn202084.

9. Norris JW, Bornstein NM. Progression and regression of carotid stenosis. Stroke 1986; 17 (4): 755–757. doi: 10.1161/01.str.17.4.755.

10. Spence JD, Hackam D. Treating arteries instead of risk factors: a paradigm change in management of atherosclerosis. Stroke 2010; 41 (6): 1193–1199. doi: 10.1161/ STROKEAHA.110.577973.

11. Brott TG, Halperin JL, Abbara S et al. ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: a report of the American College of Cardiology Foundation /American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Neurointerventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. J Am Coll Cardiol 2011; 57 (8): e16–94. doi: 10.1016/j.jacc.2010.11.006.

12. Škoda O, Herzig R, Mikulík R et al. Klinický standard pro dia­gnostiku a léčbu pacientů s ischemickou cévní mozkovou příhodou a s tranzitorní ischemickou atakou – verze 2016. Cesk Slov Neurol N 2016; 79/112 (3): 351–363. doi: 10.14735/amcsnn2016351.

13. Hrbáč T, Netuka D, Beneš V et al. SONOlysis in prevention of Brain InfaRctions During Internal carotid Endarterectomy (SONOBIRDIE) trial – study protocol for a randomized controlled trial. Trials 2017; 18 (1): 25. doi: 10.1186/s13063-016-1754-x.

14. Matějka R, Štěpanovská J, Kneppo P et al. Modulární lineární aktuátor pro aplikace v tkáňovém inženýrství. Užitný vzor 34123. 17. 4. 2020.

15. Berenson GS, Srinivasan SR, Freedman DS et al. Atherosclerosis and its evolution in childhood. Am J Med Sci 1987; 294 (6): 429–440. doi: 10.1097/00000441-198712000-00008.

16. Peeters W, Hellings WE, de Kleijn DP et al. Carotid atherosclerotic plaques stabilize after stroke: insights into the natural process of atherosclerotic plaque stabilization. Arterioscler Thromb Vasc Biol 2009; 29 (1): 128–133. doi: 10.1161/ATVBAHA.108.173658.

17. Gimbrone Jr, MA, García-Cardeña G. Vascular endothelium, hemodynamics, and the pathobio­logy of atherosclerosis. Cardiovasc Pathol 2013; 22 (1): 9–15. doi: 10.1016/j.carpath.2012.06.006.

18. Stegehuis VE, Wijntjens GW, Murai T et al. Assessing the haemodynamic impact of coronary artery stenoses: intracoronary flow versus pressure measurements. Eur Cardiol 2018: 13 (1): 46–53. doi: 10.15420/ecr.2018: 7: 2.

19. Heinen SG, de Boer SW, van den Heuvel DA et al. Hemodynamic significance assessment of equivocal iliac artery stenoses by comparing duplex ultrasonography with intra-arterial pressure measurements. J Cardiovasc Surg (Torino) 2018; 59 (1): 37–44. doi: 10.23736/S0021-9509.17.10186-2.

20. Heinen SG, Huberts W, van den Heuvel DA et al. A comparative study of geometry-based methods and intra-arterial pressure measurements to assess the hemodynamic significance of equivocal iliac artery stenoses. Vascular 2019; 27 (2): 119–127. doi: 10.1177/170853811 8805659.

21. Polanczyk A, Podgorski M, Wozniak T et al. Computational fluid dynamics as an engineering tool for the reconstruction of hemodynamics after carotid artery stenosis operation: a case study. Medicina (Kaunas) 2018; 54 (3): 42. doi: 10.3390/medicina54030042.

22. Berg P, Roloff C, Beuing O et al. The computational fluid dynamics rupture challenge 2013 – phase II: variability of hemodynamic simulations in two intracranial aneurysms. J Biomech Eng 2015; 137 (12): 121008. doi: 10.1115/1.4031794.

23. Hejčl A, Švihlová H, Sejkorová A et al. Computational fluid dynamics of a fatal ruptured anterior communicating artery aneurysm – a case report. J Neurol Surg 2017; 40 (2): 329–338. doi: 10.1055/s-0037-1604286.

24. Duanmu Z, Chen W, Gao H et al. A one-dimensional hemodynamic model of the coronary arterial tree. Front Physiol 2019; 10: 853. doi: 10.3389/fphys.2019.00853.

25. Yang Y, Liu X, Xia Y et al. Impact of spatial characteristics in the left stenotic coronary artery on the hemodynamics and visualization of 3D replica models. Sci Rep 2017; 7 (1): 1–13. doi: 10.1038/s41598-017-15620-1.

26. Zhou H, Meng L, Zhou W et al. Computational and experimental assessment of influences of hemodynamic shear stress on carotid plaque. Biomed Eng Online 2017; 16 (1): 92. doi: 10.1186/s12938-017-0386-z.

27. Fiedler J, Reiser M, Košťál P et al. Blood flow volume measurement in cervical and intracranial arteries using quantitative magnetic resonance angiography and duplex sonography (Bocaccia) – a prospective observational study. [In press]. Ultraschall Med 2020. doi: 10.1055/a-1113-7343.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 6

2020 Issue 6

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#