Laboratory efficacy testing of acetylsalicylic acid treatment in secondary prevention of ischemic stroke
Authors:
T. Adámek 1; Z. Paluch 2; L. Sadílková 1; Š. Alušík 3
Authors‘ workplace:
Interní oddělení, Thomayerova nemocnice, Praha
1; Ústav farmakologie, 2. LF UK, Praha
2; Katedra vnitřního lékařství, Institut postgraduálního vzdělávání ve zdravotnictví, Praha
3
Published in:
Cesk Slov Neurol N 2019; 82(1): 84-90
Category:
Original Paper
Overview
Aim:
To assess the efficacy of antiplatelet therapy with acetylsalicylic acid (ASA) in secondary prevention in a strictly selected group of patients after ischemic stroke.
Patients and methods:
The group included 106 patients with a minimum of factors potentially affecting the effect of ASA. While compliance was verified by laboratory determination of ASA levels in plasma, presence of previous embolic events was minimized by thorough examination of the heart and carotid arteries. All patients taking 100 mg of ASA daily had their serum 11-dehydrotromboxane B2 levels determined.
Results:
Even in this strictly selected set of patients, effective thromboxane suppression (95% and higher) was only achieved in 76 patients, with suppression levels of 80– 94.9% determined in 24 patients, and lower in another six patients. Patients with inadequate thromboxane suppression had statistically higher body mass index, cholesterol and LDL cholesterol, and uric acid levels.
Conclusion:
While ASA use led to marked thromboxane suppression in all patients, the required level of suppression was not achieved in over a fourth of our patients. Consistent with latest reports, it is likely that the seemingly inadequate suppression of thromboxane is due to its production from sources other than platelets.
Key words:
acetylsalicylic acid – ischemic stroke – 11-dehydrothromboxane
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
乙酰水杨酸治疗缺血性脑卒中的实验室疗效试验
目的:
目的:评价乙酰水杨酸(ASA)抗血小板治疗在缺血性脑卒中后二级预防中的作用。
患者和方法:
本组纳入106例患者,其中影响ASA疗效的因素最少。虽然通过实验室测定血浆中ASA水平证实了依从性,但通过对心脏和颈动脉的彻底检查,以前的栓塞事件的存在被最小化。所有每天服用100毫克ASA的患者的血清中11-脱氢托姆波塞烷B2水平被测定。
结果:
即使在这组严格选择的患者中,有效的血栓素抑制(95%及以上)仅在76例患者中实现,其中24例患者的抑制水平为80 - 94.9%,另外6例患者的抑制水平较低。血栓素抑制不足的患者,其体重指数、胆固醇和低密度脂蛋白胆固醇以及尿酸水平均有统计学意义上的升高。
结论:
虽然ASA的使用导致所有患者血栓素明显抑制,但超过四分之一的患者没有达到所需的抑制水平。与最新的报道相一致,血栓素的抑制作用似乎并不充分,这可能是由于血栓素不是由血小板产生的。
关键词:
乙酰水杨酸-缺血性脑卒中- 11-脱氢血栓素
Sources
1. Oza R, Rundell K, Garcellano M. Recurrent ischemic stroke: strategies for prevention. Am Fam Physician 2017; 96(7): 436– 440.
2. Rothwell PM, Algra A, Chen Z et al. Effects of aspirin on risk and severity of early recurrent stroke after transient ischaemic attack and ischaemic stroke:time-course analysis of randomised trials. Lancet 2016; 388(10042): 365– 375. doi: 10.1016/ S0140-6736(16)30468-8.
3. Kernan WN, Ovbiagele B, Black HR et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack. A guideline for healthcare professionals from the American Heart Association/ American Stroke Association. Stroke 2014; 45(7): 2160– 2236. doi: 10.1161/ STR.0000000000000024.
4. Cattaneo M. The clinical relevance of response vari-ability to antiplatelet therapy. Hematology Am Soc Hematol Educ Program 2011; 2011: 70– 75. doi: 10.1182/ asheducation-2011.1.70.
5. Committee for Proprietary Medicinal Products. Position paper on the regulatory requirements for the authorization of low-dose modified release ASA formulations in the secondary prevention of cardiovascular events. [online] EMEA: London 2002. Available from URL: http:/ / www.ema.europa.eu/ docs/ en_GB/ document_library/ Scientific_guideline/ 2009/ 09/ WC500003340.pdf.
6. Kuliczkowski W, Witkowski A, Polonski L et al. Interindividual variability in the response to oral antiplatelet drugs: a position paper of the Working Group on antiplatelet drugs resistance appointed by the Section of Cardiovascular Interventions of the Polish Cardiac Society, endorsed by the Working Group on Thrombosis of the European Society of Cardiology. Eur Heart J 2009; 30(4): 426– 435. doi: 10.1093/ eurheartj/ ehn562.
7. Santos MT, Moscardó A, Latorre A et al. The time between venepuncture and blood incubation is critical for serum thromboxane B2 synthesis. Platelets 2017; 28(3): 310– 311. doi: 10.1080/ 09537104.2016.1246719.
8. Brun C, Daali Y, Combescure C et al. Aspirin response: differences in serum thromboxane B2 levels between clinical studies. Platelets 2016; 27(3): 196– 202. doi: 10.3109/ 09537104.2015.1072147.
9. van Diemen JJ, Fuijkschot WW, Spit K et al. Influence of pre-analytical time and temperature conditions on serum thromboxane B2 levels. Thromb Res 2018; 163: 1– 5. doi: 10.1016/ j.thromres.2018.01.010.
10. Paluch Z, Jedlicková V, Skibova J et al. The effectiveness of antiplatelet treatment with aspirin in polymorbid patients. Int Angiol 2007; 26(3): 206– 212.
11. Cattaneo M. Letter by Cattaneo regarding article“Incomplete inhibition of thromboxane biosynthesis by acetylsalicylic acid: determinants and effect on cardiovascular risk“. Circulation 2009; 119(24): e594. doi: 10.1161/ CIRCULATIONAHA.108.838888.
12. Adámek T, Paluch Z, Alušík Š. Úskalí měření tromboxanů v klinické praxi. Chem Listy. In press 2018.
13. Eikelboom JW, Hirsh J, Weitz JI et al. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation 2002; 105(14): 1650– 1655.
14. Sadilkova L, Paluch Z, Mottlova J et al. The purification is not crucial in EIA measurement of thromboxane B2 and 11-dehydrothromboxane B2 in human plasma. Clin Lab 2012; 58(1– 2): 177– 183.
15. Sadilkova L, Paluch Z, Mottlova et al. The effect of selected pre-analytical phase variables on plasma thromboxane A2 measurements in humans. Int J Lab Hematol 2013; 35(1): 92– 100. doi: 10.1111/ j.1751-553X.2012.01458.x.
16. Alusik S, Jedlickova V, Paluch Z et al. Determination of plasma salicylic acid levels to assess compliance to acetylsalicylic acid therapy. Chem Listy 2010; 104: 803– 806.
17. Cheng X, Xie NC, Xu HL et al. Biochemical aspirin resistance is associated with increased stroke severity and infarct volumes in ischemic stroke patients. Oncotarget 2017; 8(44): 77086– 77095. doi: 10.18632/ oncotarget.20356.
18. Zhang N, Wang Z, Zhou L. Aspirin resistance are associated with long-term recurrent stroke events after ischaemic stroke. Brain Res Bull 2017; 134: 205– 210. doi: 10.1016/ j.brainresbull.2017.08.012.
19. Patrono C, Ciabattoni G, Pinca E et al. Low dose of aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb Res 1980; 17(3– 4): 317– 327.
20. Eikelboom JW, Hankey GJ, Thom J et al. Incomplete inhibition of thromboxane biosynthesis by acetylsalicylic acid: determinants and effect on cardiovascular risk. Circulation 2008; 118(17): 1705– 1712. doi: 10.1161/ CIRCULATIONAHA.108.768283.
21. Lopez RL, Guyer KE, Torre IG et al. Platelet thromboxane (11-dehydro-Thromboxane B2) and aspirin response in patients with diabetes and coronary artery disease. World J Diabetes 2014; 5(2): 115– 127. doi: 10.4239/ wjd.v5.i2.115.
22. Rocca B, Dragani A, Pagliaccia F. Identifying determinants of variability to tailor aspiirin therapy. Expert Rev Cardiovasc Ther 2013; 11(3): 365– 379. doi: 10.1586/ erc.12.144.
23. Kooten F, Ciabattoni G, Koudstaal PJ et al. Increased platelet activation in the chronic phase after cerebral ischemia and intracerebral hemorrhage. Stroke 1999; 30(3): 546– 549.
24. Smith JP, Haddad EV, Taylor MB et al. Suboptimal inhibition of platelet cyclooxygenase-1 by aspirin in metabolic syndrome. Hypertension 2012; 59(3): 719– 725. doi: 10.1161/ HYPERTENSIONAHA.111.181404.
25. Chen W, Pan Y, Jing J et al. Recurrent stroke in minor ischemic stroke or transient ischemic attack with metabolic syndrome and/ or diabetes mellitus. J Am Heart Assoc 2017; 6(6): pii: e005446. doi: 10.1161/ JAHA.116.005446.
26. Kwok C, Shoamanesh A, Copley H et al. Efficacy of antiplatelet therapy in secondary prevention following lacunar stroke: pooled analysis of randomized trials. Stroke 2015; 46(4): 1014– 1023. doi: 10.1161/ STROKEAHA.114.008422.
27. Santilli F, Lapenna D, La Barbara S et al. Oxidative stress-related mechanisms affecting response to aspirin in diabetes mellitus. Free Radic Biol Med 2015; 80: 101– 110. doi: 10.1016/ j.freeradbiomed.2014.12.010.
28. Hu L, Chang L, Zhang Y et al. Platelets express activated P2Y12 receptor in patients with diabetes mellitus. Circulation 2017; 136(9): 817– 833. doi: 10.1161/ CIRCULATIONAHA.116.026995.
29. Capuano V, Marchese F, Capuano R et al. Hyperuricemia as an independent risk factor for major cardiovascular events:a 10-year cohort study from Southern Italy. J Cardiovasc Med (Hagerstown) 2017; 18(3): 159– 164. doi: 10.2459/ JCM.0000000000000347.
30. Li M, Hou W, Zhang X et al. Hyperuricemia and risk of stroke: a systematic review and meta-analysis of prospective studies. Atherosclerosis 2014; 232(2): 265– 270. doi: 10.1016/ j.atherosclerosis.2013.11.051.
31. Guo L. Interpretation of the Chinese expert consensus: recommendations for diagnosis and treatment of asymptomatic hyperuricemia complicated with cardiovascular diseases. J Transl Intern Med 2014; 2(2): 93– 96.
32. Larsen KS, Pottegard A, Lindegaard HM et al. Effect of allopurinol on cardiovascular outcomes in hyperuricemic patients: a cohort study. Am J Med 2016; 129(3): 299– 306. doi: 10.1016/ j.amjmed.2015.11.003.
33. Blinden K, Singla A, Gesheff M et al. Statin therapy and thromboxane generation in patients with coronary artery disease treated with high-dose aspirin. Thromb Haemost 2014; 112(2): 323– 331. doi: 10.1160/ TH14-01-0094.
34. Würtz M, Grove EL, Kristensen SD et al. The antiplatelet effect of aspirin is reduced by proton pump inhibitors in patients with coronary artery disease. Heart 2010; 96(5): 368– 371. doi: 10.1136/ hrt.2009.181107.
35. Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 2015; 8: 105– 118. doi: 10.2147/ JPR.S75160.
36. Gurbel PA, Bliden KP, DiChiara J et al. Evaluation of dose- related effects of aspirin on platelet function. Results from the Aspirin-Induced Platelet Effect (ASPECT) study. Circulation 2007; 115(25): 3156– 3164. doi: 10.1161/ CIRCULATIONAHA.106.675587.
37. Kakorous N, Gluckman T, Conte JV et al. Differential impact of serial measurement of nonplatelet thromboxane generation on long-term outcome after cardiac surgery. J Am Heart Assoc 2017; 6(11): e007486. doi: 10.1161/ JAHA.117.007486.
38. Dzeshka MS, Shantsila A, Lip GY. Effects of aspirin on endothelial function and hypertension. Curr Hypertens Rep 2016; 18(11): 83. doi: 10.1007/ s11906-016-0688-8.
39. Wang Y, Wang Y, Zhao X et al. CHANCE Investigators. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med 2013; 369(1): 11– 19. doi: 10.1056/ NEJMoa1215340.
40. Johnston SC, Easton JD, Farrant M et al. On behalf of the POINT Investigators. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med 2018; 379(3): 215– 225. doi: 10.1056/ NEJMoa1800410.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2019 Issue 1
Most read in this issue
- Mild traumatic brain injury management – consensus statement of the Czech Neurological Society CMS JEP
- Chronic subdural haematoma
- Oligoclonal IgG and free light chains – comparison between agarose and polyacrylamide isoelectric focusing
- Ketogenic diet – effective treatment of childhood and adolescent epilepsies