Computational fluid dynamics of intracranial aneurysms and its potential contribution in clinical practice from a neurosurgeon’s perspective
Authors:
A. Hejčl 1,2; M. Stratilová 3; H. Švihlová 4; J. Hron 4; T. Radovnický 1; A. Sejkorová 1; A. Štekláčová 5; O. Bradáč 5; V. Beneš 5; M. Sameš 1; D. Dragomir-Daescu 6
Authors‘ workplace:
Neurochirurgická klinika UJEP, Krajská zdravotní, a. s., Masarykova nemocnice v Ústí nad Labem, o. z.
1; Mezinárodní centrum klinického výzkumu, FN u sv. Anny v Brně
2; 2. LF UK, Praha
3; Matematický ústav, MFF UK, Praha
4; Neurochirurgická a neuroonkologická klinika 1. LF UK, Praha
5; Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
6
Published in:
Cesk Slov Neurol N 2018; 81(5): 532-538
Category:
Review Article
doi:
https://doi.org/10.14735/amcsnn2018532
Overview
Computational fluid dynamics have developed in the area of cerebrovascular diseases in recent years, especially in the research of intracranial aneurysms. The goal of most studies is to understand the pathophysiology of the initiation, growth and rupture of brain aneurysms and determine those risk hemodynamic parameters that lead to such processes. In our paper, we summarize the current state of art computational fluid dynamics especially from a surgical point of view of intracranial aneurysms and we focus on its possible contribution in clinical practice.
Key words:
aneurysm – computational fluid dynamics – wall shear stress Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Sources
1. Vlak MH, Algra A, Brandenburg R et al. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 2011; 10(7): 626– 636. doi: 10.1016/ S1474-4422(11)70109-0.
2. Sugiyama S, Meng H, Funamoto K et al. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurg 2012; 78(5): 462– 468. doi: 10.1016/ j.wneu.2011.09.023.
3. Rinkel GJ, Djibuti M, Algra A et al. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 1998; 29(1): 251– 256.
4. Nanda A, Patra DP, Bir SC et al. Microsurgical clipping of unruptured intracranial aneurysms: a single surgeon‘s experience over 16 Years. World Neurosurg 2017; 100: 85– 99. doi: 10.1016/ j.wneu.2016.12.099.
5. Kerezoudis P, McCutcheon BA, Murphy M et al. Pre-dictors of 30-day perioperative morbidity and mortality of unruptured intracranial aneurysm surgery. Clin Neurol Neurosurg 2016; 149: 75– 80. doi: 10.1016/ j.clineuro.2016.07.027.
6. Connolly ES Jr., Rabinstein AA, Carhuapoma JR et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/ american Stroke Association. Stroke 2012; 43(6): 1711– 1737. doi: 10.1161/ STR.0b013e3182587839.
7. Molyneux A, Kerr R, Stratton I et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 2002; 360(9342): 1267– 1274.
8. Greving JP, Wermer MJ, Brown RD et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 2014; 13(1): 59– 66.
9. Etminan N, Brown RD Jr., Beseoglu K et al. The unruptured intracranial aneurysm treatment score: a multidisciplinary consensus. Neurology 2015; 85(10): 881– 889. doi: 10.1212/ WNL.0000000000001891.
10. Caroff J, Mihalea C, Da Ros V et al. A computational fluid dynamics (CFD) study of WEB-treated aneurysms: Can CFD predict WEB „compression“ during follow-up? J Neuroradiol 2017; 44(4): 262– 268. doi: 10.1016/ j.neurad.2017.03.005.
11. Geers AJ, Larrabide I, Radaelli AG et al. Patient-specific computational hemodynamics of intracranial aneurysms from 3D rotational angiography and CT angiography: an in vivo reproducibility study. AJNR Am J Neuroradiol 2011; 32(3): 581– 586. doi: 10.3174/ ajnr.A2306.
12. Ren Y, Chen GZ, Liu Z et al. Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography. Biomed Eng Online 2016; 15(1): 50. doi: 10.1186/ s12938-016-0163-4.
13. Evju O. On the assumption of laminar flow in physiological flows: cerebral aneurysms as an illustrative example, modeling the heart and the circulatory system. In: Quarteroni A (ed). Modeling the heart and the circulatory system. Basel: Springer International Publishing 2015: 177– 195.
14. Evju O, Pozo JM, Frangi AF et al. Robustness of common hemodynamic indicators with respect to numerical resolution in 38 middle cerebral artery aneurysms. PLoS One 2017; 12(6): e0177566. doi: 10.1371/ journal.pone.0177566.
15. Nixon AM, Gunel M, Sumpio BE. The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg 2010; 112(6): 1240– 1253. doi: 10.3171/ 2009.10.JNS09759.
16. Meng H, Tutino VM, Xiang J et al. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 2014; 35(7): 1254– 1262. doi: 10.3174/ ajnr.A3558.
17. Frosen J, Tulamo R, Paetau A et al. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol 2012; 123(6): 773– 786. doi: 10.1007/ s00401-011-0939-3.
18. Rossitti S, Lofgren J. Optimality principles and flow orderliness at the branching points of cerebral arteries. Stroke 1993; 24(7): 1029– 1032.
19. Geers AJ, Morales HG, Larrabide I et al. Wall shear stress at the initiation site of cerebral aneurysms. Biomech Model Mechanobiol 2017; 16(1): 97– 115. doi: 10.1007/ s10237-016-0804-3.
20. Valen-Sendstad K, Piccinelli M, Steinman DA. High-resolution computational fluid dynamics detects flow instabilities in the carotid siphon: implications for aneurysm initiation and rupture? J Biomech 2014; 47(12): 3210– 3216. doi: 10.1016/ j.jbiomech.2014.04.018.
21. Orlicky M, Sames M, Hejcl A et al. Carotid-ophthalmic aneurysms: Our results and treatment strategy. Br J Neurosurg 2015; 29(2): 237– 242. doi: 10.3109/ 02688 697.2014.976176.
22. Mantha A, Karmonik C, Benndorf G et al. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am J Neuroradiol 2006; 27(5): 1113– 1118.
23. Boussel L, Rayz V, McCulloch C et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 2008; 39(11): 2997– 3002. doi: 10.1161/ STROKEAHA.108.521617.
24. Meng H, Metaxa E, Gao L et al. Progressive aneurysm development following hemodynamic insult. J Neurosurg 2011; 114(4): 1095– 1103. doi: 10.3171/ 2010.9.JNS10368.
25. Cebral JR, Sheridan M, Putman CM. Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am J Neuroradiol 2010; 31(2): 304– 310. doi: 10.3174/ ajnr.A1819.
26. Machi P, Ouared R, Brina O et al. Hemodynamics of focal versus global growth of small cerebral aneurysms. Clin Neuroradiol 2017. [Epub ahead of print]. doi: 10.1007/ s00062-017-0640-6.
27. Russell JH, Kelson N, Barry M et al. Computational fluid dynamic analysis of intracranial aneurysmal bleb formation. Neurosurgery 2013; 73(6): 1061– 1068. doi: 10.1227/ NEU.0000000000000137.
28. Cebral JR, Ollikainen E, Chung BJ et al. Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. AJNR Am J Neuroradiol 2017; 38(1): 119– 126. doi: 10.3174/ ajnr.A4951.
29. Penn DL, Komotar RJ, Sander Connolly E. Hemodynamic mechanisms underlying cerebral aneurysm pathogenesis. J Clin Neurosci 2011; 18(11): 1435– 1438. doi: 10.1016/ j.jocn.2011.05.001.
30. Zhou G, Zhu Y, Yin Y et al. Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis. Sci Rep 2017; 7(1): 5331. doi: 10.1038/ s41598-017-05886-w.
31. Shojima M, Oshima M, Takagi K et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004; 35(11): 2500– 2505. doi: 10.1161/ 01.STR.0000144648.89172.0f.
32. Jou LD, Lee DH, Morsi H et al. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol 2008; 29(9): 1761– 1767. doi: 10.3174/ ajnr.A1180.
33. Lu G, Huang L, Zhang XL et al. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation. AJNR Am J Neuroradiol 2011; 32(7): 1255– 1261. doi: 10.3174/ ajnr.A2461.
34. Zhang Y, Yang X, Wang Y et al. Influence of morphology and hemodynamic factors on rupture of multiple intracranial aneurysms: matched-pairs of ruptured-unruptured aneurysms located unilaterally on the anterior circulation. BMC Neurol 2014; 14: 253. doi: 10.1186/ s12883-014-0253-5.
35. Omodaka S, Sugiyama S, Inoue T et al. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc Dis 2012; 34(2): 121– 129. doi: 10.1159/ 000339678.
36. Hejcl A, Svihlova H, Sejkorova A et al. Computational fluid dynamics of a fatal ruptured anterior communicating artery aneurysm. J Neurol Surg A Cent Eur Neurosurg 2017; 78(6): 610– 616. doi: 10.1055/ s-0037-1604286.
37. Fukazawa K, Ishida F, Umeda Y et al. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. World Neurosurg 2015; 83(1): 80– 86. doi: 10.1016/ j.wneu.2013.02.012.
38. Hodis S, Uthamaraj S, Lanzino G et al. Computational fluid dynamics simulation of an anterior communicating artery ruptured during angiography. BMJ Case Rep 2013; 2013: pii: bcr2012010596. doi: 10.1136/ bcr-2012-010596.
39. Cebral JR, Castro MA, Burgess JE et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 2005; 26(10): 2550– 2559.
40. Cebral JR, Hendrickson S, Putman CM. Hemodynamics in a lethal basilar artery aneurysm just before its rupture. AJNR Am J Neuroradiol 2009; 30(1): 95– 98. doi: 10.3174/ ajnr.A1312.
41. Frosen J, Piippo A, Paetau A et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 2004; 35(10): 2287– 2293. doi: 10.1161/ 01.STR.0000140636.30204.da.
42. Schneiders JJ, Marquering HA, van den Berg R et al. Rupture-associated changes of cerebral aneurysm geometry: high-resolution 3D imaging before and after rupture. AJNR Am J Neuroradiol 2014; 35(7): 1358– 1362. doi: 10.3174/ ajnr.A3866.
43. Sejkorova A, Dennis KD, Svihlova H et al. Hemodynamic changes in a middle cerebral artery aneurysm at follow-up times before and after its rupture: a case report and a review of the literature. Neurosurg Rev 2017; 40(2): 329– 338. doi: 10.1007/ s10143-016-0795-7.
44. Sugiyama S, Niizuma K, Sato K et al. Blood flow into basilar tip aneurysms: a predictor for recanalization after coil embolization. Stroke 2016; 47(10): 2541– 2547. doi: 10.1161/ STROKEAHA.116.013555.
45. Xiang J, Natarajan SK, Tremmel M et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 2011; 42(1): 144– 152. doi: 10.1161/ STROKEAHA.110.592923.
46. Janiga G, Berg P, Sugiyama S et al. The computational fluid dynamics rupture challenge 2013-phase I: prediction of rupture status in intracranial aneurysms. AJNR Am J Neuroradiol 2015; 36(3): 530– 536. doi: 10.3174/ ajnr.A4157.
47. Berg P, Roloff C, Beuing O et al. The computational fluid dynamics rupture challenge 2013– phase II: variability of hemodynamic simulations in two intracranial aneurysms. J Biomech Eng 2015; 137(12): 121008. doi: 10.1115/ 1.4031794.
48. van Ooij P, Guedon A, Poelma C et al. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed 2012; 25(1): 14– 26. doi: 10.1002/ nbm.1706.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2018 Issue 5
Most read in this issue
- New insights in the diagnosis and treatment of amyotrophic lateral sclerosis
- Review of diseases with restricted diffusion on magnetic resonance imaging of the brain
- Cervical vertigo – fiction or reality?
- Anaesthesia and neuromuscular disorders