Possibilities of regulation of neuroimmune and neuroendocrine processes using physiotherapy
Authors:
G. Angelová 1; M. Bičíková 2; L. Kolátorová 2; P. Kučera 3; M. Grünerová Lippertová 1; K. Řasová 1
Authors‘ workplace:
Klinika rehabilitačního lékařství, 3. LF UK a FNKV v Praze
1; Oddělení steroidů a proteofaktorů, Endokrinologický ústav v Praze
2; Ústav imunologie, 3. LF UK v Praze
3
Published in:
Cesk Slov Neurol N 2018; 81(4): 410-413
Category:
Review Article
doi:
https://doi.org/10.14735/amcsnn2018410
Overview
The article provides an overview of the potential possibilities of physiotherapy to interfere with the neuroendocrineimmune system in patients with MS. Article describes the principles used in physiotherapy to start adaptation processes of the immune and endocrine system.
Key words:
physiotherapy – hypothalamic-pituitary-adrenal axis – dehydroepiandrosterone – multiple sclerosis – long term potentiation – physical stress
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manu script met the ICMJE “uniform requirements” for biomedical papers
Sources
1. Di Filippo M, Sarchielli P, Picconi B et al. Neuroinflammation and synaptic plasticity: theoretical basis for a novel immune-centred therapeutic approach to neurological disorders. Trends Pharmacol Sci 2008; 29(8): 402– 412. doi: 10.1016/ j.tips.2008.06.005.
2. Heesen C, Gold SM, Hartmann S et al. Endocrine and cytokine responses to standardized physical stress in multiple sclerosis. Brain Behav Immun 2003; 17(6): 473– 481.
3. Schulz KH, Gold SM, Witte J et al. Impact of aerobic training on immune-endocrine parameters neurotrophic factors quality of life and coordinative function in multiple sclerosis. J Neurol Sci 2004; 225(1– 2): 11– 18. doi: 10.1016/ j.jns.2004.06.009.
4. Castellano V, Patel DI, White LJ. Cytokine responses to acute and chronic exercise in multiple sclerosis. J Appl Physiol (1985) 2008; 104(6): 1697– 1702. doi: 10.1152/ japplphysiol.00954.2007.
5. Rasova K, Dolezil D, Kalistova H et al. Physiotherapy as an immunoactive therapy? A pilot study. Neuro Endocrinology Lett 2012; 33(1): 67– 75.
6. Hoffman-Goetz L, Pedersen BK. Exercise and the immune system: a model of the stress response? Immunol Today 1994; 15(8): 382– 387. doi: 10.1016/ 0167-5699(94)90177-5.
7. Walsh N, Gleeson M, Shephard RJ et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev 2011; 17: 6– 63.
8. Brines R, Hoffman-Goetz L, Pedersen BK. Can you exercise to make your immune system fitter? Immunol Today 1996; 17(6): 252– 254.
9. Kern S, Ziemssen T. Brain-immune communication psychoneuroimmunology of multiple sclerosis. Mult Scler 2008; 14(1): 6– 21. doi: 10.1177/ 1352458507079657.
10. White LJ, Castellano V. Exercise and brain health – implications for multiple sclerosis: Part II – immune factors and stress hormones. Sports Med 2008; 38(3): 179– 186.
11. Stefferl A, Linington C, Holsboer F et al. Susceptibility and resistance to experimental allergic encephalomyelitis: relationship with hypothalamic-pituitary-adrenocortical axis responsiveness in the rat. Endocrinology 1999; 140(11): 4932– 4938. doi: 10.1210/ endo.140.11.7109.
12. Heesen C, Schulz H, Schmidt M et al. Endocrine and cytokine responses to acute psychological stress in multiple sclerosis. Brain Behav Immun 2002; 16(3): 282– 287. doi: 10.1006/ brbi.2001.0628.
13. White LJ, Castellano V. Exercise and brain health – implications for multiple sclerosis: Part 1 – neuronal growth factors. Sports Med 2008; 38(2): 91– 100.
14. Gold SM, Schulz KH, Hartmann S et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol 2003; 138(1– 2): 99– 105.
15. Boldyrev AA, Carpenter DO, Johnson P. Emerging evidence for a similar role of glutamate receptors in the nervous and immune systems. J Neurochem 2005; 95(4): 913– 918. doi: 10.1111/ j.1471-4159.2005.03456.x.
16. Onat F, Cavdar S. Cerebellar connections: hypothalamus. Cerebellum 2003; 2(4): 263– 269. doi: 10.1080/ 14734220310016187.
17. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 2002; 25(6): 295– 301.
18. Zhu JN, Yung WH, Kwok-Chong Chow B et al. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 2006; 52(1): 93– 106. doi: 10.1016/ j.brainresrev.2006.01.003.
19. Molinari M, Filippini V, Leggio MG. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience 2002; 111(4): 863– 870.
20. Bicikova M, Tallová J, Hill M et al. Serum concentrations of some neuroactive steroids in women suffering from mixed anxiety-depressive disorder. Neurochem Res 2000; 25(12): 1623– 1627.
21. Daoudal G, Debanne D. Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 2003; 10(6): 456– 465. doi: 10.1101/ lm.64103.
22. Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain 2006; 129(7): 1659– 1673. doi: 10.1093/ brain/ awl082.
23. Hampl R, Hill M, Stárka L. DHEA metabolites during the life span. In: Morfin R (ed). DHEA and the brain. London and New York: Taylor & Francis 2002.
24. El Kihel L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)-recent reports. Steroids 2012; 77(1– 2): 10– 26. doi: 10.1016/ j.steroids.2011.09.008.
25. Tellez N, Comabella M, Julià E et al. Fatigue in progressive multiple sclerosis is associated with low levels of dehydroepiandrosterone. Mult Scler 2006; 12(4): 487– 494. doi: 10.1191/ 135248505ms1322oa.
26. Bains JS, Oliet SH. Glia: they make your memories stick! Trends Neurosci 2007; 30(8): 417– 424. doi: 10.1016/ j.tins.2007.06.007.
27. Baulieu E, Schumacher M. Progesterone as a neuroactive neurosteroid with special reference to the effect of progesterone on myelination. Steroids 2000; 65(10– 11): 605– 612.
28. Stárka L, Dušková M, Hill M. Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem Mol Biol 2015; 145: 254– 260. doi: 10.1016/ j.jsbmb.2014.03.008.
29. Corpéchot C, Robel P, Axelson M et al. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci U S A 1981; 78(8): 4704– 4707.
30. Li A, Bigelow JC. The 7-hydroxylation of dehydroepiandrosterone in rat brain. Steroids 2010; 75(6): 404– 410. doi: 10.1016/ j.steroids.2010.02.003.
31. Kümpfel T, Then Bergh F, Friess E et al. Dehydroepiandrosterone response to the adrenocorticotropin test and the combined dexamethasone and corticotropin-releasing hormone test in patients with multiple sclerosis. Neuroendocrinology 1999; 70(6): 431– 438. doi: 10.1159/ 000054505.
32. Doostzadeh J, Cotillon AC, Benalychérif A et al. Inhibition studies of dehydroepiandrosterone 7α- and 7β-hydroxylation in mouse liver microsomes. Steroids 1998; 63(11): 608– 614.
33. Doostzadeh J, Morfin R. Studies of the enzyme complex responsible for pregnenolone and dehydroepiandrosterone 7α-hydroxylation in mouse tissues. Steroids 1996; 61(10): 613– 620.
34. Akwa Y, Morfin R, Robel P et al. Neurosteroid metabolism. 7 alpha-Hydroxylation of dehydroepiandrosterone and pregnenolone by rat brain microsomes. Biochem J 1992; 288(3): 959– 964.
35. Morfin R, Lafaye P, Cotillon AC et al. 7a-Hydroxy-Dehydroepiandrosterone and Immune Response. Ann NY Acad Sci 2000; 917: 971– 982.
36. Hampl R, Hill M, Sterzl I et al. Immunomodulatory 7-hydroxylated metabolites of dehydroepiandrosterone are present in human semen. J Steroid Biochem Mol Biol 2000; 75: 273– 276.
37. Pelissier MA, Trap C, Malewiak MI et al. Antioxidant effects of dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat colon intestine and liver. Steroids 2004; 69(2): 137– 144. doi: 10.1016/ j.steroids.2003.12.006.
38. Akwa Y, Young J, Kabbadj K et al. Neurosteroids: biosynthesis metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J Steroid Biochem Mol Biol 1991; 40(1– 3): 71– 81.
39. Jellinck H, Croft G, McEwen BS et al. Metabolism of dehydroepiandrosterone by rodent brain cell lines: Relationship between 7-hydroxylation and aromatization. J Steroid Biochem Mol Biol 2005; 93(1): 81– 86. doi: 10.1016/ j.jsbmb.2004.11.008.
40. Bicikova M, Ripová D, Hill M et al. Plasma levels of 7-hydroxylated dehydroepiandrosterone (DHEA) metabolites and selected amino-thiols as discriminatory tools of Alzheimer‘s disease and vascular dementia. Clin Chem Lab Med 2004; 42(5): 518– 524. doi: 10.1515/ CCLM.2004.088.
41. Morfin R, Stárka L. Neurosteroid 7-hydroxylation products in the brain. Int Rev Neurobiol 2001; 46: 79– 95.
42. Friess E, Schiffelholz T, Steckler T et al. Dehydroepiandrosterone – a neurosteroid. Eur J Clin Invest 2000; 30 (Suppl 3): 46– 50.
43. Allolio B, Arlt W. DHEA treatment: myth or reality? Trends Endocrinol Metab 2002; 13(7): 288– 294.
44. Schumacher M, Weill-Engerer S, Liere P et al. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol 2003; 71(1): 3– 29.
45. Jandova D, Bicikova M, Hill M et al. Health resort treatment improved the neurosteroid profile in thyroidectomized women. Endocr Regul 2008; 42(1): 17– 22.
46. Jandová D, Bičíková M, Čeřovská I et al. Hormonální změny u thyreoidektomovaných žen v rámci následné rehabilitační léčby. Rehabil Fyz Lék 2006; 13(1): 7– 15.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2018 Issue 4
Most read in this issue
- Antiplatelet and anticoagulant therapy in carotid endarterectomies
- Imaging of peripheral nerves using diffusion tensor imaging and MR tractography
- Bilateral abducens nerve palsy after head and cervical spinal injury
- Late-onset Huntington’s disease – an overlooked diagnosis