#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Hypothalamic inflam­mation and somatic dis­eases


Authors: B. Mravec;  A. S. Černáčková
Authors‘ workplace: Biomedicínske centrum SAV, Ústav experimentálnej endokrinológie, Slovenská akadémia vied, Bratislava ;  Fyziologický ústav, LF UK v Bratislave
Published in: Cesk Slov Neurol N 2018; 81(3): 278-283
Category: Review Article
doi: https://doi.org/10.14735/amcsnn2018278

Tato práca bola podporená grantom VEGA 2/ 0028/ 16 a grantom EÚ z programu cezhraničnej spolupráce Inter­reg V-A SK-AT V014 –  NutriAging.

Overview

The hypothalamus represents a key structure involved in maintenance of homeostasis. Several factors, such as long-term increases in plasma levels of saturated fatty acids or pro-inflammatory cytokines, can induce hypothalamic inflammation. Hypothalamic inflammation disrupts homeostatic regulations and may contribute to the development of somatic diseases or may have a negative effect on the course of already existing somatic diseases. Hypothalamic inflammation plays a role in the etiopathogenesis of obesity, diabetes mellitus, hypertension, and cachexia. Understanding the causes and mechanisms involved in the development of hypothalamic inflammation allows for a more comprehensive view of the etiopathogenesis of somatic diseases and thus creates a basis for the introduction of new approaches in their treatment.

Keywords:
cytokines – diabetes mellitus – hypertension – hypothalamus – cachexia – obesity – ageing – stress – inflammation

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.


Sources

1. Bil­lman GE. Homeostasis: the dynamic self-regulatory process that maintains health and buf­fers against dis­ease. In: Sturmberg JP, Martin CM (eds). Handbook of systems and complexity in health. New York: Springer Science+Business Media 2013: 159– 170.

2. Chovatiya R, Medzhitov R. Stres­s, inflam­mation, and defense of homeostasis. Mol Cell 2014; 54(2): 281– 288. doi: 10.1016/ j.molcel.2014.03.030.

3. Graebner AK, Iyer M, Carter ME. Understand­­ing how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9: 111. doi: 10.3389/ fnsys.2015.00111.

4. Watts AG. 60 YEARS OF NEUROENDOCRINOLOGY: the structure of the neuroendocrine hypothalamus: the neuroanatomical legacy of Geof­frey Har­ris. J Endocrinol 2015; 226(2): T25– T39. doi: 10.1530/ JOE-15-0157.

5. de Git KC, Adan RA. Leptin resistance in diet-induced obesity: the role of hypothalamic inflam­mation. Obes Rev 2015; 16(3): 207– 224. doi: 10.1111/ obr.12243.

6. Burfeind KG, Michaelis KA, Marks DL. The central role of hypothalamic inflam­mation in the acute il­lness response and cachexia. Semin Cell Dev Biol 2016; 54: 42– 52. doi: 10.1016/ j.semcdb.2015.10.038.

7. Swaab DF. Chapter 20 Hypothalamic infections. Handb Clin Neurol 2004; 80: 91– 99. doi: 10.1016/ S0072-9752(04)80006-X.

8. Xanthos DN, Sandkuhler J. Neurogenic neuroinflam­mation: inflam­matory CNS reactions in response to neuronal activity. Nat Rev Neurosci 2014; 15(1): 43– 53. doi: 10.1038/ nrn3617.

9. Velickovic N, Drakulic D, Petrovic S et al. Time-course of hypothalamic-pituitary-adrenal axis activity and inflam­mation in juvenile rat brain after cranial ir­radiation. Cell Mol Neurobio­l 2012; 32(7): 1175– 1185. doi: 10.1007/ s10571-012-9843-1.

10. Bal­lesteros-Zebadua P, Custodio V, Franco-Perez J et al. Whole-brain ir­radiation increases NREM sleep and hypothalamic expres­sion of IL-1beta in rats. Int J RadiatBiol 2014; 90(2): 142– 148. doi: 10.3109/ 09553002.2014.859767.

11. Cai DS, Liu TW. Hypothalamic inflam­mation: a double-edged sword to nutritional dis­eases. Ann Ny Acad Sci 2011; 1243: E1– E39. doi: 10.1111/ j.1749-6632.2011.06388.x.

12. Zhang KZ, Kaufman RJ. From endoplasmic-reticulum stress to the inflam­matory response. Nature 2008; 454(7203): 455– 462. doi: 10.1038/ nature07203.

13. Pahl HL. Activators and target genes of Rel/ NF-kap­paB transcription factors. Oncogene 1999; 18(49): 6853– 6866. doi: 10.1038/ sj.onc.1203239.

14. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006; 25(51): 6680– 6684. doi: 10.1038/ sj.onc.1209954.

15. Gregor MF, Hotamisligil GS. Inflam­matory mechanisms in obesity. An­nu Rev Im­munol 2011; 29: 415– 445. doi: 10.1146/ an­nurev-im­munol-031210-101322.

16. Purkayastha S, Zhang G, Cai D. Uncoupl­­ing the mechanisms of obesity and hypertension by target­­ing hypothalamic IKK-beta and NF-kappaB. Nat Med 2011; 17(7): 883– 887. doi: 10.1038/ nm.2372.

17. Posey KA, Clegg DJ, Printz RL et al. Hypothalamic proinflam­matory lipid accumulation, inflam­mation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009; 296(5): E1003– E1012. doi: 10.1152/ ajpendo.90377.2008.

18. Zhang X, Zhang G, Zhang H et al. Hypothalamic IKKbeta/ NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008; 135(1): 61– 73. doi: 10.1016/ j.cel­l.2008.07.043.

19. Rahman MH, Bhusal A, Lee WH et al. Hypothalamic inflam­mation and malfunction­­ing glia in the pathophysiology of obesity and diabetes: Translational significance. Biochem Pharmacol 2018: pii: S0006-2952(18)30024. doi: 10.1016/ j.bcp.2018.01.024.

20. Thaler JP, Choi SJ, Schwartz MW et al. Hypothalamic inflam­mation and energy homeostasis: Resolv­­ing the paradox. Front Neuroendocrin 2010; 31(1): 79– 84. doi: 10.1016/ j.yfrne.2009.10.002.

21. Cesar HC, Pisani LP. Fatty-acid-mediated hypothalamic inflam­mation and epigenetic program­ming. J Nutr Biochem 2017; 42: 1– 6. doi: 10.1016/ j.jnutbio­.2016.08.008.

22. Cardinale JP, Sriramula S, Mariappan N et al. Angiotensin II-Induced hypertension is modulated by nuclear factor-kappa B in the paraventricular nucleus. Hypertension 2012; 59(1): 113– 121. doi: 10.1161/ HYPERTENSIONAHA.111.182154.

23. Erdos B, Broxson CS, K­­ing MA et al. Acute pres­sor ef­fect of central angiotensin II is mediated by NAD(P)H-oxidase-dependent superoxide production in the hypothalamic cardiovascular regulatory nuclei. J Hypertens 2006; 24(1): 109– 116.

24. Han C, Rice MW, Cai DS. Neuroinflam­matory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab 2016; 311(1): E32– E41. doi: 10.1152/ ajpendo.00012.2016.

25. Simonds SE, Pryor JT, Ravus­sin E et al. Leptin mediates the increase in blood pres­sure as­sociated with obesity. Cell 2014; 159(6): 1404– 1416. doi: 10.1016/ j.cel­l.2014.10.058.

26. Li P, Cui BP, Zhang LL et al. Melanocortin 3/ 4 receptors in paraventricular nucleus modulate sympathetic outflow and blood pres­sure. Exp physiol 2013; 98(2): 435– 443. doi: 10.1113/ expphysiol.2012.067256.

27. da Silva AA, do Carmo JM, Kanyicska B et al. Endogenous melanocortin system activity contributes to the elevated arterial pres­sure in spontaneously hypertensive rats. Hypertension 2008; 51(4): 884– 890. doi: 10.1161/ HYPERTENSIONAHA.107.100636.

28. Khor S, Cai DS. Hypothalamic and inflam­matory basis of hypertension. Clin Sci 2017; 131(3): 211– 223. doi: 10.1042/ Cs20160001.

29. Braun TP, Zhu XX, Szumowski M et al. Central nervous system inflam­mation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J Exp Med 2011; 208(12): 2449– 2463. doi: 10.1084/ jem.20111020.

30. Ovadya Y, Krizhanovsky V. Senescent cel­ls: SASPected drivers of age-related pathologies. Biogerontology 2014; 15(6): 627– 642. doi: 10.1007/ s10522-014-9529-9.

31. Lopez-Otin C, Blasco MA, Partridge L et al. The hal­lmarks of aging. Cell 2013; 153(6): 1194– 1217. doi: 10.1016/ j.cel­l.2013.05.039.

32. Campisi J. Aging, cel­lular senescence, and cancer. An­nu Rev Physiol 2013; 75: 685– 705. doi: 10.1146/ an­nurev-physiol-030212-183653.

33. Franceschi C, Bonafe M, Valensin S et al. Inflam­mag­­ing – an evolutionary perspective on im­muno­senes­cence. Ann N Y Acad Sci 2000; 908: 244– 254.

34. Deleidi M, Jaggle M, Rubino G. Im­mune aging, dysmetabolism, and inflam­mation in neurological dis­eases. Front Neurosci 2015; 9: 172. doi: 10.3389/ fnins.2015.00172.

35. von Bernhardi R, Tichauer JE, Eugenín J. Aging-dependent changes of microglial cel­ls and their relevance for neurodegenerative disorders. J Neurochem 2010; 112(5): 1099– 1114. doi: 10.1111/ j.1471-4159.2009.06537.x.

36. Ye SM, Johnson RW. An age-related decline in interleukin-10 may contribute to the increased expres­sion of interleukin-6 in brain of aged mice. Neuroim­munomodulation 2001; 9(4): 183– 192. doi: 10.1159/ 000049025.

37. Jacobs AH, Tavitian B, consortium INMiND. Non-invasive molecular imag­­ing of neuroinflam­mation. J Cereb Blood Flow Metab 2012; 32(7): 1393– 1415. doi: 10.1038/ jcbfm.2012.53.

38. Chauveau F, Boutin H, Van Camp N et al. Nuclear imag­­ing of neuroinflam­mation: a comprehensive review of [C-11]PK11195 chal­lengers. Eur J Nucl Med Mol Imagin­­ing 2008; 35(12): 2304– 2319. doi: 10.1007/ s00259-008-0908-9.

39. Arlicot N, Katsifis A, Gar­reau L et al. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflect­­ing the degree of neuroinflam­mation in a rat model of microglial activation. Eur J Nucl Med Mol Imagin­­ing 2008; 35(12): 2203– 2211. doi: 10.1007/ s00259-008-0834-x.

40. Shukuri M, Takashima-Hirano M, Tokuda K et al. In vivo expres­sion of cyclooxygenase-1 in activated microglia and macrophages dur­­ing neuroinflam­mation visualized by PET with C-11-ketoprofen methyl ester. J Nucl Med 2011; 52(7): 1094– 1101. doi: 10.2967/ jnumed.110.084046.

41. Dol­le F, Luus C, Reynolds A et al. Radiolabel­led molecules for imag­­ing the translocator protein (18 kDa) us­­ing positron emis­sion tomography. Curr Med Chem 2009; 16(22): 2899– 2923. doi: 10.2174/ 092986709788803150.

42. Pinas V, Windhorst A, Lam­mertsma A et al. Radiolabel­led matrix metal­loproteinase (Mmp) inhibitors for in vivo imag­­ing of unstable plaques us­­ing PET and spect 1. J Label­led Comp Radiopharm 2009; 52(S1): S42– S42. doi: 10.1002/ jlcr.1627.

43. McAteer MA, Sibson NR, von zur Muhlen C et al. In vivo magnetic resonance imag­­ing of acute brain inflam­mation us­­ing microparticles of iron oxide. Nat Med 2007; 13(10): 1253– 1258. doi: 10.1038/ nm1631.

44. Shao X, Zhang HA, Rajian JR et al. I-125-Labeled gold nanorods for targeted imag­­ing of inflam­mation. ACS Nano 2011; 5(11): 8967– 8973. doi: 10.1021/ n­n203138t.

45. Saha GB, MacIntyre WJ, Go RT. Radiopharmaceuticals for brain imaging. Semin Nucl Med 1994; 24(4): 324– 349. doi: 10.1016/ S0001-2998(05)80022-4.

46. Quarantel­li M. MRI/ MRS in neuroinflam­mation: methodology and applications. Clin Transl Imag­­ing 2015; 3(6): 475– 489. doi: 10.1007/ s40336-015-0142-y.

47. Rigas A, Farmakis D, Papingiotis G et al. Hypothalamic dysfunction in heart failure: pathogenetic mechanisms and therapeutic implications. Heart Fail Rev 2018; 23(1): 55– 61. doi: 10.1007/ s10741-017-9659-7.

48. Ropel­le ER, Flores MB, Cintra DE et al. IL-6 and IL-10 anti-inflam­matory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol 2010; 8(8): pii: e1000465. doi: 10.1371/ journal.pbio­.1000465.

49. Cintra DE, Ropel­le ER, Moraes JC et al. Unsaturated fatty acids revert diet-induced hypothalamic inflam­mation in obesity. PLoS One 2012; 7(1): e30571. doi: 10.1371/ journal.pone.0030571.

50. Dragano NRV, Solon C, Ramalho AF et al. Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expres­sed in the hypothalamus and control energy homeostasis and inflam­mation. J Neuroinflam­mation 2017; 14(1): 91. doi: 10.1186/ s12974-017-0869-7.

51. Lira FS, Yamashita AS, Rosa JC et al. Hypothalamic inflam­mation is reversed by endurance train­­ing in anorectic-cachectic rats. Nutr Metab (Lond) 2011; 8(1): 60. doi: 10.1186/ 1743-7075-8-60.

52. al-Majid S, McCarthy DO. Resistance exercise train­­ing attenuates wast­­ing of the extensor digitorum longus muscle in mice bear­­ing the colon-26 adenocarcinoma. Biol Res Nurs 2001; 2(3): 155– 166. doi: 10.1177/ 109980040100200301.

53. DeBoer MD, Zhu XX, Levas­seur P et al. Ghrelin treatment causes increased food intake and retention of lean body mass in a rat model of cancer cachexia. Endocrinology 2007; 148(6): 3004– 3012. doi: 10.1210/ en.2007-0016.

54. Gonzalez PV, Cragnolini AB, Schioth HB et al. Interleukin-1 beta-induced anorexia is reversed by ghrelin. Peptides 2006; 27(12): 3220– 3225. doi: 10.1016/ j.peptides.2006.09.008.

55. Duxbury MS, Waseem T, Ito H et al. Ghrelin promotes pancreatic adenocarcinoma cel­lular proliferation and invasivenes­s. Biochem Biophys Res Com­mun 2003; 309(2): 464– 468. doi: 10.1016/ j.bbrc.2003.08.024.

56. Goldstein DS. Adrenal responses to stres­s.Cell Mol Neurobio­l 2010; 30(8): 1433– 1440. doi: 10.1007/ s10571-010-9606-9.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 3

2018 Issue 3

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#