#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Myotonic Dystrophy – Unity in Diversity


Authors: S. Voháňka
Authors‘ workplace: Neurologická klinika LF MU a FN Brno
Published in: Cesk Slov Neurol N 2017; 80/113(3): 255-265
Category: Minimonography
doi: https://doi.org/10.14735/amcsnn2017255

Overview

Myotonic dystrophy is the most frequent muscular dystrophy of adult age characterised by muscle weakness, myotonia, cataracts, and autosomal dominant inheritance. The disease is caused by trinucleotide expansion in the DMPK gene in case of myotonic dystrophy type 1 (MD1) and tetranucleotide expansion in the CNBP/ZNF9 gene in myotonic dystrophy type 2 (MD2). The accumulation of RNA transcripts and its toxicity leads to dysregulation of many other genes, providing a clue for understanding of the broad clinical spectrum of the disease. MD1 manifests from birth (congenital) to adulthood. Severity and time of onset correlate with the number of repeats. On the contrary, MD2 is a disease with an onset during adult age only. Localisation of muscle weakness is also diff erent; the facial muscles, paraspinal, distal muscles of upper and lower limbs are aff ected in case of MD1 and the proximal muscles, esp. of lower limbs are involved in patients suff ering from MD2 – this localisation determined the former name: proximal myotonic myopathy. In contrast to MD1 that has worldwide prevalence, MD2 is predominantly restricted to middle and northern Europe. The heart conduction system (arrhythmias) is aff ected in patients with either type of the disease. In general, the impact of the disease is more severe in patients with MD1 than in MD2. Due to involvement of many systems, a multidisciplinary approach and team should be involved in the management of these patients.

Key words:
myotonic dystrophy type 1 – myotonic dystrophy type 2 – proximal myotonic myopathy

The authors declare they have no potential confl icts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.


Sources

1. Curschmann H. Uber partiel­le Myotonie unter dem Bilde einer Beschaftigungsneurose und Lahmung. Berl Klin Wochenschr 1905;42:1175– 85.

2. Batten FE, Gibb HP. Myotonia atrophica. Brain 1909;32:187– 205.

3. Steinert HHW. Myopathologische Beiträge. I. Über das klinische und anatomische Bilde des Muskelschwunds des Myotoniker. Dtsch Z Nervenheilkd 1909;37:58– 104.

4. Fu YH, Pizzuti A, Fenwick RG, et al. An unstable triplet repeat in a gene related to myotonic muscular dys­trophy. Science 1992;255(5049):1256– 8.

5. Thornton CA, Griggs RC, Moxley RT. Myotonic dystrophy with no trinucleotide repeat expansion. Ann Neurol 1994;35(3):269– 72.

6. Ricker K, Koch MC, Lehman­n-Horn F, et al. Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weaknes­s, and cataracts. Neurology 1994;44(8):1448– 52.

7. Ranum LP, Rasmus­sen PF, Benzow KA, et al. Genetic mapp­ing of a second myotonic dystrophy locus. Nat Genet 1998;19(2):196– 8.

8. Ricker K, Grimm T, Koch MC, et al. Linkage of proximal myotonic myopathy to chromosome 3q. Neurology 1999;52(1):170– 1.

9. Liquori CL, Ricker K, Moseley ML, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001;293(5531):864– 7.

10. Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic chal­lenges. Lancet Neurol 2012;11(10):891– 905. doi: 10.1016/ S1474-4422(12)70204-1.

11. Suominen T, Bachinski LL, Auvinen S, et al. Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur J Hum Genet 2011;19(7):776– 82. doi: 10.1038/ ejhg.2011.23.

12. Ricker K. Myotonic dystrophy and proximal myotonic myophathy. J Neurol 1999;246(5):334– 8.

13. Vohanka S, Parmova O, Mazanec R, et al. Myotonic dystrophy in Czech Republic: data from the national registry. J Neurol Sci 2015;357:e347– 8. doi: 10.1016/ j.jns.2015.08.1232.

14. Udd B, Meola G, Krahe R, et al. Myotonic dystrophy type 2 (DM2) and related disorders report of the 180th ENMC workshop includ­ing guidelines on dia­g­nostics and management 3–5 December 2010, Naarden, The Netherlands. Neuromuscul Disord NMD 2011;21(6):443– 50. doi: 10.1016/ j.nmd.2011.03.013.

15. Morales F, Couto JM, Higham CF, et al. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum Mol Genet 2012;21(16):3558– 67. doi: 10.1093/ hmg/ dds185.

16. Wong LJ, Ashizawa T, Monckton DG, et al. Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. Am J Hum Genet 1995;56(1):114– 22.

17. Monckton DG, Wong LJ, Ashizawa T, et al. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum Mol Genet 1995;4(1):1– 8.

18. Monckton DG, Caskey CT. Unstable triplet repeat dis­eases. Circulation 1995;91(2):513– 20.

19. Ashizawa T, Dun­ne PW, Ward PA, et al. Ef­fects of the sex of myotonic dystrophy patients on the unstable triplet repeat in their af­fected of­fspring. Neurology 1994;44(1):120– 2.

20. Martorell L, Gamez J, Cayuela ML, et al. Germline mutational dynamics in myotonic dystrophy type 1 males: al­lele length and age ef­fects. Neurology 2004;62(2):269– 74.

21. Bachinski LL, Udd B, Meola G, et al. Confirmation of the type 2 myotonic dystrophy (CCTG)n expansion mutation in patients with proximal myotonic myopathy/ proximal myotonic dystrophy of dif­ferent European origins: a single shared haplotype indicates an ancestral founder ef­fect. Am J Hum Genet 2003;73(4):835– 48.

22. Liquori CL, Ikeda Y, Weatherspoon M, et al. Myotonic dystrophy type 2: human founder haplotype and evolutionary conservation of the repeat tract. Am J Hum Genet 2003;73(4):849– 62.

23. Bachinski LL, Czernuszewicz T, Ramagli LS, et al. Premutation al­lele pool in myotonic dystrophy type 2. Neurology 2009;72(6):490– 7. doi: 10.1212/ 01.wnl.0000333665.01888.33.

24. Sal­linen R, Vihola A, Bachinski LL, et al. New methods for molecular dia­gnosis and demonstration of the (CCTG)n mutation in myotonic dystrophy type 2 (DM2). Neuromuscul Disord 2004;14(4):274– 83.

25. Thornton CA, Johnson K, Moxley RT. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann Neurol 1994;35(1):104– 7.

26. Jansen G, Wil­lems P, Coerwinkel M, et al. Gonosomal mosaicism in myotonic dystrophy patients: involvement of mitotic events in (CTG)n repeat variation and selection against extreme expansion in sperm. Am J Hum Genet 1994;54(4):575– 85.

27. Day JW, Ricker K, Jacobsen JF, et al. Myotonic dystrophy type 2: molecular, dia­gnostic and clinical spectrum. Neurology 2003;60(4):657– 64.

28. Cerghet M, Tapos D, Serajee FJ, et al. Homozygous myotonic dystrophy with craniosynostosis. J Child Neurol 2008;23(8):930– 3. doi: 10.1177/ 0883073808314965.

29. Martorell L, Il­la I, Rosell J, et al. Homozygous myotonic dystrophy: clinical and molecular studies of three unrelated cases. J Med Genet 1996;33(9):783– 5.

30. Schoser BG, Kress W, Walter MC, et al. Homozygosity for CCTG mutation in myotonic dystrophy type 2. Brain 2004;127(8):1868– 77.

31. Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta 2015;1852(4):594– 606. doi: 10.1016/ j.bbadis.2014.05.019.

32. Meola G, Cardani R. Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurol Sci 2017;38(4):535– 46. doi: 10.1007/ s10072-016-2805-5.

33. Osborne RJ, Thornton CA. RNA-dominant dis-eases. Hum Mol Genet 2006;15 Spec No 2:R162– 9. 34. Cho DH, Tapscott SJ. Myotonic dystrophy: emerg­ing mechanisms for DM1 and DM2. Biochim Biophys Acta 2007;1772(2):195– 204. doi: 10.1016/ j.bbadis.2006.05.013.

35. Mankodi A, Teng-Umnuay P, Krym M, et al. Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Ann Neurol 2003;54(6):760– 8.

36. Lin X, Mil­ler JW, Mankodi A, et al. Failure of MBNL1-dependent post-natal splic­ing transitions in myotonic dystrophy. Hum Mol Genet 2006;15(13):2087– 97. doi: 10.1093/ hmg/ ddl132.

37. Jiang H, Mankodi A, Swanson MS, et al. Myotonic dystrophy type 1 is as­sociated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splic­ing in neurons. Hum Mol Genet 2004;13(24):3079– 88.

38. Fardaei M, Rogers MT, Thorpe HM, et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cel­ls. Hum Mol Genet 2002;11(7):805– 14.

39. Kanadia RN, Johnstone KA, Mankodi A, et al. A muscleblind knockout model for myotonic dystrophy. Science 2003;302(5652):1978– 80.

40. Mankodi A, Urbinati CR, Yuan QP, et al. Muscle-blind localizes to nuclear foci of aber­rant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 2001;10(19):2165– 70.

41. Meola G, Cardani R. Myotonic Dystrophy Type 2: an Update on Clinical Aspects, Genetic and Pathomolecular Mechanism. J Neuromuscul Dis 2015;2:S59– 71. doi: 10.3233/ JND-150088.

42. Fugier C, Klein AF, Ham­mer C, et al. Misregulated alternative splic­ing of BIN1 is as­sociated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 2011;17(6):720– 5. doi:1 0.1038/ nm.2374.

43. Vihola A, Bachinski LL, Sirito M, et al. Dif­ferences in aber­rant expres­sion and splic­ing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2. Acta Neuropathol 2010;119(4):465– 79. doi: 10.1007/ s00401-010-0637-6.

44. Koebis M, Ohsawa N, Kino Y, et al. Alternative splic­ing of myomesin 1 gene is aber­rantly regulated in myotonic dystrophy type 1. Genes Cel­ls Devoted Mol Cell Mech 2011;16(9):961– 72. doi: 10.1111/ j.1365-2443.2011.01542.x.

45. Rinaldi F, Ter­racciano C, Pisani V, et al. Aber­rant splic­ing and expres­sion of the non muscle myosin heavy-chain gene MYH14 in DM1 muscle tis­sues. Neurobio­l Dis 2012;45(1):264– 71. doi: 10.1016/ j.nbd.2011.08.010.

46. Tang ZZ, Yarotskyy V, Wei L, et al. Muscle weakness in myotonic dystrophy as­sociated with misregulated splic­ing and altered gat­ing of Ca(V)1.1 calcium chan­nel. Hum Mol Genet 2012;21(6):1312– 24. doi: 10.1093/ hmg/ ddr568.

47. Jurkat-Rott K, Lehman­n-Horn F. State of the art in hereditary muscle chan­nelopathies. Acta Myol 2010;29(2):343– 50.

48. Jurkat-Rott K, Lehman­n-Horn F. Muscle chan­nelopathies and critical points in functional and genetic studies. J Clin Invest 2005;115(8):2000– 9.

49. Mankodi A, Takahashi MP, Jiang H, et al. Expanded CUG repeats trigger aber­rant splic­ing of ClC-1 chloride chan­nel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 2002;10(1):35– 44.

50. Charlet B, Savkur RS, Singh G, et al. Loss of the muscle-specific chloride chan­nel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 2002;10(1):45– 53.

51. Machuca-Tzili L, Brook D, Hilton-Jones D. Clinical and molecular aspects of the myotonic dystrophies: a review. Muscle Nerve 2005;32(1):1– 18. doi: 10.1002/ mus.20301.

52. Ranum LP, Day JW. Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet 2004;74(5):793– 804.

53. Day JW, Ranum LP. RNA pathogenesis of the myotonic dystrophies. Neuromuscul Disord 2005;15(1):5– 16.

54. Day JW, Ranum LP. Genetics and molecular pathogenesis of the myotonic dystrophies. Curr Neurol Neurosci Rep 2005;5(1):55– 9.

55. Mathieu J, Al­lard P, Potvin L, et al. A 10-year study of mortality in a cohort of patients with myotonic dystrophy. Neurology 1999;52(8):1658– 62.

56. Groh WJ, Groh MR, Saha C, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med 2008;358(25):2688– 97. doi: 10.1056/ NEJMoa062800.

57. Hermans MC, Faber CG, Bekkers SCAM, et al. Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2012;14:48. doi: 10.1186/ 1532-429X-14-48.

58. Gar­rott HM, Wal­land MJ, O’Day J. Recur­rent posterior capsular opacification and capsulorhexis contracture after cataract surgery in myotonic dystrophy. Clin Experiment Ophthalmol 2004;32(6):653– 5.

59. Rosa N, Lanza M, Bor­rel­li M, et al. Low intraocular pres­sure result­ing from ciliary body detachment in patients with myotonic dystrophy. Ophthalmology 2011;118(2):260– 4. doi: 10.1016/ j.ophtha.2010.06.020.

60. Meola G, Sansone V, Perani D, et al. Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM-1) and in proximal myotonic myopathy (PROMM/ DM-2). Neuromuscul Disord 2003;13(10):813– 21.

61. Yu H, Laberge L, Jaus­sent I, et al. Daytime sleepiness and REM sleep characteristics in myotonic dystrophy: a case-control study. Sleep 2011;34(2):165– 70.

62. Dauvil­liers YA, Laberge L. Myotonic dystrophy type 1, daytime sleepiness and REM sleep dysregulation. Sleep Med Rev 2012;16(6):539– 45. doi: 10.1016/ j.smrv.2012.01.001.

63. Laberge L, Gagnon C, Dauvil­liers Y. Daytime sleepiness and myotonic dystrophy. Curr Neurol Neurosci Rep 2013;13(4):340. doi: 10.1007/ s11910-013-0340-9.

64. Winblad S, Lindberg C, Hansen S. Temperament and character in patients with clas­sical myotonic dystrophy type 1 (DM-1). Neuromuscul Disord 2005;15(4):287– 92.

65. van der Werf S, Kalkman J, Bleijenberg G, et al. The relation between daytime sleepines­s, fatigue, and reduced motivation in patients with adult onset myotonic dystrophy. J Neurol Neurosurg Psychiatry 2003;74(1):138– 9.

66. van Engelen BG, Eymard B, Wilcox D. 123rd ENMC International Workshop: Management and Therapy in Myotonic Dystrophy, 6– 8 February 2004, Naarden, The Netherlands. Neuromuscul Disord 2005;15(5):389– 94.

67. Min­nerop M, Weber B, Schoene-Bake JC, et al. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain 2011;134(12):3527– 43. doi: 10.1093/ brain/ awr299.

68. Ron­nblom A, Anders­son S, Daniels­son A. Mecha­nisms of diar­rhoea in myotonic dystrophy. Eur J Gastroenterol Hepatol 1998;10(7):607– 10.

69. Ron­nblom A, Daniels­son A, el Salhy M. Intestinal endocrine cel­ls in myotonic dystrophy: an im­munocy-tochemical and computed image analytical study. J Intern Med 1999;245(4):91– 7.

70. Ron­nblom A, Forsberg H, Daniels­son A. Gastrointestinal symp­toms in myotonic dystrophy. Scand J Gastroenterol 1996;31(7):654– 7.

71. Vohanka S, Parmova O, Strenkova J. Lower Urinary Tract and Bowel Dysfunction in Patients with Myotonic Dystrophy. J Neuromuscul Dis 2014;1:200– 1. doi: 10.3233/ JND-149002.

72. Sher­rod QJ, Chiu MW, Gutier­rez M. Multiple pilomatricomas: cutaneous marker for myotonic dystrophy. Dermatol Online J 2008;14(7):22.

73. Muel­ler CM, Hilbert JE, Martens W, et al. Hypothesis: neoplasms in myotonic dystrophy. Cancer Causes Control 2009;20:2009– 20. doi: 10.1007/ s10552-009-9395-y.

74. Win AK, Perattur PG, Pulido JS, et al. Increased cancer risks in myotonic dystrophy. Mayo Clin Proc 2012;87(2):130– 5. doi: 10.1016/ j.mayocp.2011.09.005.

75. Gadal­la SM, Lund M, Pfeif­fer RM, et al. Cancer risk among patients with myotonic muscular dystrophy. JAMA 2011;306(22):2480– 6. doi: 10.1001/ jama.2011.1796.

76. Gadal­la SM, Pfeif­fer RM, Kristins­son SY, et al. Quantify­ing cancer absolute risk and cancer mortality in the presence of compet­ing events after a myotonic dystrophy dia­gnosis. PLoS One 2013;8(11):e79851. doi: 10.1371/ journal.pone.0079851.

77. Ashizawa T, Sarkar PS. Myotonic dystrophy types 1and 2. Handb Clin Neurol 2011;101:193– 237. doi: 10.1016/ B978-0-08-045031-5.00015-3.

78. Angeard N, Gargiulo M, Jacquette A, et al. Cognitive profile in childhood myotonic dystrophy type 1: is there a global impairment? Neuromuscul Disord 2007;17(6):451– 8. doi: 10.1016/ j.nmd.2007.02.012.

79. Angeard N, Jacquette A, Gargiulo M, et al. A new window on neurocognitive dysfunction in the childhood form of myotonic dystrophy type 1 (DM1). Neuromuscul Disord 2011;21(7):468– 76. doi: 10.1016/ j.nmd.2011.04.009.

80. Echen­ne B, Rideau A, Roubertie A, et al. Myotonic dystrophy type I in childhood. Long-term evolution in patients surviv­ing the neonatal period. Eur J Paediatr Neurol 2008;12(3):210– 23. doi: 10.1016/ j.ejpn.2007.07.014.

81. Meola G, Moxley RT. Myotonic dystrophy type 2 and related myotonic disorders. J Neurol 2004;251(10):1173– 82.

82. Sun C, Van Ghelue M, Tranebjærg L, et al. Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet 2011;80(6):574– 80. doi: 10.1111/ j.1399-0004.2010.01616.x.

83. Parmová O, Voháňka S, Fajkusová L, et al. Souběžný výskyt mutace v genu ZNF9 (myotonická dystrofie typu 2) a v genu CLCN1 (myotonia congenita) v jedné rodině –  kazuistika. Čes Slov Neurol N 2013;76/ 109(6):648– 51.

84. Tieleman AA, Jenks KM, Kalkman JS, et al. High dis­ease impact of myotonic dystrophy type 2 on physical and mental functioning. J Neurol 2011;258(10):1820– 6. doi: 10.1007/ s00415-011-6027-8.

85. Sansone V, Gandos­sini S, Cotel­li M, et al. Cognitive impairment in adult myotonic dystrophies: a longitudinal study. Neurol Sci 2007;28(1):9– 15.

86. Aminoff MJ, Beckley DJ, McIlroy MB. Autonomic function in myotonic dystrophy. ArchNeurol 1985;42(1):16.

87. Suokas KI, Haanpää M, Kautiainen H, et al. Pain in patients with myotonic dystrophy type 2: a postal survey in Finland. Muscle Nerve 2012;45(1):70– 4. doi: 10.1002/ mus.22249.

88. George A, Schneider-Gold C, Zier S, et al. Musculoskeletal pain in patients with myotonic dystrophy type 2. Arch Neurol 2004;61(12):1938– 42.

89. Jensen MP, Hof­fman AJ, Stoelb BL, et al. Chronic pain in persons with myotonic dystrophy and facioscapulohumeral dystrophy. Arch Phys Med Rehabil 2008;89(2):320– 8. doi: 10.1016/ j.apmr.2007.08.153.

90. Mäntyselkä PT, Turunen JHO, Ahonen RS, et al. Chronic pain and poor self-rated health. JAMA 2003;290(18):2435– 42.

91. Parmova O, Vohanka S, Strenkova J. The Character and Frequency of Muscular Pain in Myotonic Dystrophy and Their Relationship to Myotonia. Int J Neurol Neurother 2014;1:2. doi: 10.23937/ 2378-3001/ 1/ 1/ 1009.

92. Papadimas GK, Kekou K, Papadopoulos C, et al. Phenotypic variability and molecular genetics in proximal myotonic myopathy. Muscle Nerve 2015;51(5):686– 91. doi: 10.1002/ mus.24440.

93. Hilbert JE, Ashizawa T, Day JW, et al. Dia­gnostic odys­sey of patients with myotonic dystrophy. J Neurol 2013;260(10):2497– 504. doi: 10.1007/ s00415-013-6993-0.

94. Schneider-Gold C, Beer M, Kostler H, et al. Cardiac and skeletal muscle involvement in myotonic dystrophy type 2 (DM2): a quantitative 31P-MRS and MRI study. Muscle Nerve 2004;30(5):636– 44.

95. Parmová O, Voháňka S. Výskyt bolesti u myotonické dystrofie. Neurol Praxi 2016;17(4):240– 3.

96. Moshourab R, Palada V, Grunwald S, et al. A Molecular Signature of Myalgia in Myotonic Dystrophy 2. EBioMedicine 2016;7:205– 11. doi: 10.1016/ j.ebio­m.2016.03.017.

97. Sansone VA, Brigonzi E, Schoser B, et al. The frequency and severity of cardiac involvement in myotonic dystrophy type 2 (DM2): long-term outcomes. Int J Cardiol 2013;168(2):1147– 53. doi: 10.1016/ j.ijcard.2012.11.076.

98. Schoser BG, Ricker K, Schneider-Gold C, et al. Sudden cardiac death in myotonic dystrophy type 2. Neurology 2004;63(12):2402– 4.

99. Groh WJ, Groh MR, Saha C, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med 2008;358(25):2688– 97. doi: 10.1056/ NEJMoa062800.

100. Rudnik-Schöneborn S, Schaupp M, Lindner A, et al. Brugada-like cardiac disease in myotonic dystrophy type 2: report of two unrelated patients. Eur J Neurol 2011;18(1):191– 4. doi: 10.1111/ j.1468-1331.2010.03077.x.

101. Motta J, Guil­leminault C, Bil­lingham M, et al. Cardiac abnormalities in myotonic dystrophy. Electrophysiologic and histopathologic studies. Am J Med 1979;67(3):467– 73.

102. Meola G, Sansone V, Marinou K, et al. Proximal myotonic myopathy: a syndrome with a favourable prognosis? J Neurol Sci 2002;193(2):89– 96.

103. Bushby K, Muntoni F, Bourke JP. 107th ENMC international workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. 7th-9th June 2002, Naarden, the Netherlands. Neuromuscul Disord 2003;13(2):166– 72.

104. Melacini P, Vil­lanova C, Menegazzo E, et al. Cor­relation between cardiac involvement and CTG trinucleotide repeat length in myotonic dystrophy. J Am Coll Cardiol 1995;25(1):239– 45.

105. Tokgozoglu LS, Ashizawa T, Pacifico A, et al. Cardiac involvement in a large kindred with myotonic dystrophy. Quantitative as­ses­sment and relation to size of CTG repeat expansion. JAMA 1995;274(10):813– 9.

106. Redman JB, Fenwick RG, Fu YH, et al. Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in of­fspring. JAMA 1993;269(15):1960– 5.

107. Wahbi K, Algalar­rondo V, Bécane HM, et al. Brugada syndrome and abnormal splic­ing of SCN5A in myotonic dystrophy type 1. Arch Cardiovasc Dis 2013;106(12):635– 43. doi: 10.1016/ j.acvd.2013.08.003.

108. Freyermuth F, Rau F, Kokunai Y, et al. Splic­ing mis­regulation of SCN5A contributes to cardiac-conduction delay and heart ar­rhythmia in myotonic dystrophy. Nat Com­mun 2016;7:11067. doi: 10.1038/ ncom­ms11067.

109. Gadal­la SM, Lund M, Pfeif­fer RM, et al. Cancer risk among patients with myotonic muscular dystrophy. JAMA 2011;306(22):2480– 6. doi: 10.1001/ jama.2011.1796.

110. Muel­ler CM, Hilbert JE, Martens W, et al. Hypothesis: neoplasms in myotonic dystrophy. Cancer Causes Control 2009;20(10):2009– 20. doi: 10.1007/ s10552-009-9395-y.

111. Win AK, Perattur PG, Pulido JS, et al. Increased cancer risks in myotonic dystrophy. Mayo Clin Proc 2012;87(2):130– 5. doi: 10.1016/ j.mayocp.2011.09.005.

112. Harper PS. Myotonic dystrophy. 3rd ed. London: Harcourt Publishers Ltd 2001.

113. Voháňka S. Zvýšená hladina kreatinkinázy. Interní Med 2012;14(2):62– 5.

114. Tieleman AA, den Broeder AA, van de Logt AE, et al. Strong as­sociation between myotonic dystrophy type 2 and autoim­mune diseases. J Neurol Neurosurg Psychiatry 2009;80(11):1293– 5. doi: 10.1136/ jn­np.2008.156562.

115. Bas­sez G, Chapoy E, Bastuji-Garin S, et al. Type 2 myotonic dystrophy can be predicted by the combination of type 2 muscle fiber central nucleation and scattered atrophy. J Neuropathol Exp Neurol 2008;67(4):319– 25. doi: 10.1097/ NEN.0b013e31816b4acc.

116. Vihola A, Bas­sez G, Meola G, et al. Histopathological dif­ferences of myotonic dystrophy type 1 (DM1) and PROMM/ DM2. Neurology 2003;60(11):1854– 7.

117. Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta 2015;1852(4):594– 606. doi: 10.1016/ j.bbadis.2014.05.019.

118. Kakourou G, Dhanjal S, Mamas T, et al. Modification of the triplet repeat primed polymerase chain reaction method for detection of the CTG repeat expansion in myotonic dystrophy type 1: application in preimplantation genetic dia­gnosis. Fertil Steril 2010;94(5):1674– 9. doi: 10.1016/ j.fertnstert.2009.10.050.

119. Radvansky J, Ficek A, Kadasi L. Upgrad­ing molecular dia­gnostics of myotonic dystrophies: Multiplex­ing for simultaneous characterization of the DMPK and ZNF9 repeat motifs. Mol Cell Probes 2011;25(4):182– 5. doi: 10.1016/ j.mcp.2011.04.006.

120. Udd B, Meola G, Krahe R, et al. Myotonic dystrophy type 2 (DM2) and related disorders. Neuromuscul Disord 2011;21(6):443– 50. doi: 10.1016/ j.nmd.2011.03.013.

121. Kornblum C. Myotonic Dystrophies. In: Neuromuscular Imaging. New York: Springer Science & Business Media 2013:279– 93.

122. Die-Smulders CE, Howeler CJ, Thijs C, et al. Age and causes of death in adult-onset myotonic dystrophy. Brain 1998;121(8):1557– 63.

123. Vytopil M, Voháňka S, Šišáková M. Postižení srdce u hereditárních svalových onemocnění. Část II. Myotonická dystrofie, sarkoglykanopatie a Emeryho-Dreifus­sova svalová dystrofie. Čes Slov Neurol Neurochir 2001;64/ 97(2):144– 51.

124. Magaña JJ, Cisneros B. Perspectives on gene ther­apy in myotonic dystrophy type 1. J Neurosci Res 2011;89(3):275– 85. doi: 10.1002/ jnr.22551.

125. Bis­set DR, Stepniak-Konieczna EA, Zavaljevski M, et al. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Hum Mol Genet 2015;24(17):4971– 83. doi: 10.1093/ hmg/ ddv219

126. Argov Z, de Vis­ser M. What we do not know about pregnancy in hereditary neuromuscular disorders. Neuromuscul Disord 2009;19(10):675– 9. doi: 10.1016/ j.nmd.2009.07.004.

127. Awater C, Zer­res K, Rudnik-Schöneborn S. Pregnancy course and outcome in women with hereditary neuromuscular disorders: comparison of obstetric risks in 178 patients. Eur J Obstet Gynecol Reprod Biol 2012;162(2):153– 9. doi: 10.1016/ j.ejogrb.2012.02.020.

128. Adams DC, Heyer EJ. Problems of anesthesia in patients with neuromuscular disease. Anesthesiol Clin N Am 1997;15:673– 89.

129. Brambrink AM, Kirsch JR. Perioperative care of patients with neuromuscular disease and dysfunction. Anesthesiol Clin 2007;25(3):483– 509. doi: 10. 1016/ j.anclin.2007.05.005.

130. Racca F, Mongini T, Wolfler A, et al. Recom­mendations for anesthesia and perioperative management of patients with neuromuscular disorders. Minerva Anestesiol 2013;79(4):419– 33.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 3

2017 Issue 3

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#