#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Robotic Gait Therapy


Authors: I. Vařeka 1,2;  M. Bednář 1;  R. Vařeková 3
Authors‘ workplace: Rehabilitační klinika LF UK a FN Hradec Králové 1;  Katedra fyzioterapie, FTK UP v Olomouci 2;  Katedra přírodních věd v kinantropologii, FTK UP v Olomouci 3
Published in: Cesk Slov Neurol N 2016; 79/112(2): 168-172
Category: Review Article

Overview

Robotic gait therapy, one of advanced rehabilitation technologies, original­ly evolved as a modification of the body weight-supported treadmill therapy. At present, a range of various systems based on dif­ferent principles is available, includ­ing mobile as­sistive exoskeletons. Neurophysiological es­sence of this therapy is based on the spinal cord autonomy (central pattern generators), plasticity of the central nervous system and motor learning. With respect to the evidence-based medicine, benefits of this therapy are still unclear; unambiguously positive is the reduced physical burden on a therapist. Indications must, therefore, be based on a rational consideration.

Key words:
robotics – central pattern generators – plasticity – motor learning

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.


Sources

1. Finch L, Barbeau H, Arsenault B. Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther 1991;71(11):842–55.

2. Wernig A, Müller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 1992;30(4):229–38.

3. Poděbradský J, Vařeka I. Fyzikální terapie I a II. Praha: Grada 1998.

4. Nooijen CF, Ter Hoeve N, Field-Fote EC. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil 2009;6(36):36. doi: 10.1186/1743-0003-6-36.

5. Dietz V. Body weight supported gait training: from laboratory to clinical setting. Brain Res Bull 2009;78(1):I–VI. doi: 10.1016/S0361-9230(08)00410-3.

6. Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med 2012;44(3):193–9. doi: 10.2340/16501977-0943.

7. Mehrholz J, Elsner B, Werner C, et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2013;7:CD006185. doi: 10.1002/14651858.CD006185.pub3.

8. Mehrholz J, Kugler J, Pohl M. Locomotor training for walk­ing after spinal cord injury. Cochrane Database Syst Rev 2012;11:CD006676. doi: 10.1002/14651858.CD006676.pub3.

9. Pennycott A, Wyss D, Vallery H, et al. Towards more effective robotic gait training for stroke rehabilitation: a review. J Neuroeng Rehabil 2012;9:65. doi: 10.1186/1743-0003-9-65.

10. Pantano P, Formisano R, Ricci M, et al. Motor recovery after stroke. Morphological and functional brain alterations. Brain 1996;119(6):1849–57.

11. Blakemore S, Goodbody S, Wolpert D. Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci 1998;18(18):7511–8.

12. Kwakkel G, Wagenaar R, Twisk J, et al. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomized trial. Lancet 1999;354(9174):191–6.

13. Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol 2013;26(6):609–16. doi: 10.1097/WCO.0000000000000025.

14. Richardson AG, Slotine JJ, Bizzi E, et al. Intrinsic musculosceletal properties stabilize wiping movements in the spinalized frog. J Neurosci 2005;25(12):3181–91.

15. Clarac F. Some historical reflections on the neural control of locomotion. Brain Res Rev 2008;57(1):13–21.

16. Guertin PA. The mammalian central pattern generator for locomotion. Brain Res Rev 2009;62(1):45–56. doi: 10.1016/j.brainresrev.2009.08.002.

17. Brown TG. The intrinsic factors in the act of progres­sion in mammal. Proc R Soc B 1911;84(572):308–19.

18. Stuart DG, Hultborn H. Thomas Graham Brown (1885–1965), Anders Lundberg (1920–) and the neural control of stepping. Brain Res Rew 2008;59(1):74–95. doi: 10.1016/j.brainresrev.2008.06.001.

19. Rossignol S, Bouyer L. Adaptive mechanisms of spinal locomotion in cats. Integr Comp Biol 2004;44(1):71–9.

20. Rossignol S, Barrière G, Alluin O, et al. Re-expression of locomotor function after partial spinal cord injury. Physiology (Bethesda) 2009;24(2):127–39.

21. Wilson DM, Wyman RJ. Motor output patterns dur­ing random and rhythmic stimulation of loctus thoracic ganglia. Biophys J 1965;5(2):121–43.

22. Wilson DM. The central nervous control of flight in a locust. J Exp Biol 1961;38(2):471–90.

23. Ballion B, Morin D, Viala D. Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat. Eur J Neurosci 2001;14(10):1727–38.

24. Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 2003;4(7):573–86.

25. Kullander K. Genetics moving to neuronal networks. Trends Neurosci 2005;28(5):239–47.

26. Molinari M. Plasticity properties of CPG circuits in humans: impact on gait recovery. Brain Res Bull 2009;78(1):22–5. doi: 10.1016/j.brainresbull.2008.02.030.

27. Ivanenko YP, Poppele RE, Lacquaniti F. Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects. Brain Res Bull 2009;78(1):13–21. doi: 10.1016/j.brainresbull.2008.03.018.

28. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil 2009;16(6):20. doi: 10.1186/1743-0003-6-20.

29. Kubo K, Miyoshi T, Kanai, A, et al. Gait rehabilitation device in central nervous system disease: a review. J Robotics 2011;2011:348207.

30. Diaz I, Gil JJ, Sanchez E. Lower-limb robotic rehabilitation: literature review and challenges. J Robotics 2011;2011:759764.

31. Vařeka I, Vařeková R. Kontinuální pasivní pohyb v rehabilitaci kloubů po úrazech a operacích. Acta Chir Orthop Traumatol Cech 2015;82(3):186–91.

32. Morawietz C, Moffat F. Effects of locomotor train­ing after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil 2013;94(11):2297–308. doi: 10.1016/j.apmr.2013.06.023.

33. Wessels M, Lucas C, Eriks I, et al. Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med 2010;42(6):513–9. doi: 10.2340/16501977-0525.

34. Mehrholz J, Pohl M, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 2014;1:CD002840. doi: 10.1002/14651858.CD002840.pub3.

35. Kolář P et al. Rehabilitace v klinické praxi. Praha: Galén 2010.

36. Vařeka I. Revize výkladu průběhu motorického vývoje – monokinetické stadium až batolecí období. Rehab Fyz Lek 2006;13(2):82–91.

37. Vařeka I. Revize výkladu průběhu motorického vývoje - novorozenecké období a holokinetické stadium. Rehab Fyz Lek 2006;13(2):74–81.

38. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 2002;16(1):1–14.

39. Woollacott M, Shumway-Cook A. Motor control: translating research into clinical practice. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins 2012.

40. Collins SH, Wisse M, Ruina A. A three-dimensional passive-dynamic walking robot with two legs and knees. Int J Robotics Res 2001;20(7):607–15.

41. Collins SH, Ruina A. A bipedal walking robot with efficient and human-like gait. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2005, Barcelona, Spain.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 2

2016 Issue 2

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#