#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Pupillary Response to Chromatic Stimuli


Authors: K. Skorkovská 1,2;  F. Maeda 2;  C. Kelbsch 2;  T. Peters 2,3;  B. Wilhelm 2,3;  H. Wilhelm 2
Authors‘ workplace: Klinika nemocí očních a optometrie LF MU a FN u sv. Anny v Brně 1;  Pupil Research Group, Centre for Ophthalmology, Institute of Ophthalmic Research, University of Tübingen, Germany 2;  STZ eyetrial at the Centre for Ophthalmology, University of Tübingen, Germany 3
Published in: Cesk Slov Neurol N 2014; 77/110(3): 334-338
Category: Short Communication

Studie byla podpořena Jungovou nadací pro vědu a výzkum (Jung Stiftung für Wissenschaft und Forschung).

Overview

Aim of study:
To compare chromatic pupillary responses in a group of healthy subjects and to determine if this method can be used for assessing outer and inner retinal function.

Material and methods:
The study group consisted of 17 healthy subjects. Subjects were tested with a chromatic pupillometer. The parameters of the stimulus were as follows: intensity 28 lx, duration 4 sec, and color blue (420 ± 20 nm) and red (605 ± 20 nm). The examined pupil parameters were baseline pupil diameter, maximal constriction time, relative amplitude at maximal constriction, at 3 sec after stimulus onset, at stimulus offset, at 3 sec after stimulus offset and at 7 sec after stimulus offset. Pupil response parameters to red and blue light were evaluated by paired t-test.

Results:
Except for the baseline pupil diameter (p = 0.148), there was a significant difference in all pupil response parameters to red and blue light (p = 0.001). With blue light, the relative amplitude was significantly greater and the time to maximal pupil constriction significantly longer compared to red light for all tested time points. Blue light evoked “sustained” pupil contraction, while red light rather induced “transient” contraction.

Conclusions:
Our examination protocol allowed us to unmask differences in pupil response to red and blue light in healthy subjects and to confirm involvement of the melanopsin retinal ganglion cells in the pupil light reflex, particularly with blue light. Chromatic pupillography appears to be a highly sensitive method for objective evaluation of the outer and inner retina function.

Key words:
pupillary reflex – melanopsin – photoreceptor cells

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.


Sources

1. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci 2000; 20(2): 600– 605.

2. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin‑containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 2002; 295(5557): 1065– 1070.

3. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW et al. Melanopsin and rod‑ cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003; 424(6944): 76– 81.

4. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. Diminished pupillary light reflex at high irradiances in melanopsin knockout mice. Science 2003; 299(5604): 245– 247.

5. Kawasaki A, Kardon RH. Intrinsically photosensitive retinal ganglion cells. J Neuroophthalmol 2007; 27(3): 195– 204.

6. Wilhelm BJ. Das Auge der Inneren Uhr –  Pupillenforschung in neuem Licht. Klin Monatsbl Augenheilkd 2010; 227(11): 840– 844. doi: 10.1055/ s‑ 0029– 1245658.

7. Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A. Chromatic pupil responses: preferential activation of the melanopsin‑mediated versus outer photoreceptor‑ mediated pupil light reflex. Ophthalmology 2009; 116(8): 1564– 1573. doi: 10.1016/ j.ophtha.2009.02.007.

8. Park JC, Moura AL, Raza AS, Rhee DW, Kardon RH, Hood DC. Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response. Invest Ophthalmol Vis Sci 2011; 52(9): 6624– 6635. doi: 10.1167/ iovs.11– 7586.

9. Kardon RH, Anderson SC, Damarjian TG, Grace EM,Stone E, Kawasaki A. Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology 2011; 118(2): 376– 381. doi: 10.1016/ j.ophtha.2010.06.033.

10. Lorenz B, Strohmayr E, Zahn S, Friedburg C, Kramer M, Preising M et al. Chromatic pupillometry dissects function of the three different light‑ sensitive retinal cell populations in RPE65 deficiency. Invest Ophthalmol Vis Sci 2012; 53(9): 5641– 5652. doi: 10.1167/ iovs.12– 9974.

11. Kawasaki A, Crippa SV, Kardon R, Leon L, Hamel C. Characterization of pupil responses to blue and red light stimuli in autosomal dominant retinitis pigmentosa due to NR2E3 mutation. Invest Ophthalmol Vis Sci 2012; 53(9): 5562– 5569. doi: 10.1167/ iovs.12– 10230.

12. Lucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 2001; 4(6): 621– 626.

13. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295(5557): 1070– 1073.

14. Panda S, Provencio I, Tu DC, Pires SS, Rollag MD,Castrucci AM et al. Melanopsin is required for non‑image‑ forming photic responses in blind mice. Science 2003; 301(5632): 525– 527.

15. Dacey DM, Liao HW, Peterson BB, Robinson FR,Smith VC, Pokorny J et al. Melanopsin‑expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 2005; 433(7027): 749– 754.

16. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin‑containing retinal ganglion cells. Vision Res 2007; 47(7): 946– 954.

17. McDougal DH, Gamlin PD. The influence of intrinsically photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Res 2010; 50(1): 72– 87. doi: 10.1016/ j.visres.2009.10.012.

18. Kankipati L, Girkin CA, Gamlin PD. Post‑illumination pupil response in subjects without ocular disease. Invest Ophthalmol Vis Sci 2010; 51(5): 2764– 2769. doi: 10.1167/ iovs.09– 4717

19. Feigl B, Mattes D, Thomas R, Zele AJ. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Invest Ophthalmol Vis Sci 2011; 52(7): 4362– 4367. doi: 10.1167/ iovs.10– 7069.

20. Kankipati L, Girkin CA, Gamlin PD. The post‑illumination pupil response is reduced in glaucoma patients. Invest Ophthalmol Vis Sci 2011; 52(5): 2287– 2292.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 3

2014 Issue 3

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#