Correlation between Brain Tissue Oxygen Monitoring Parameters and Transcranial Dopplerometry in Patients with Severe Subarachnoid Hemorrhage
Authors:
K. Ďuriš 1,2; E. Neuman 1; A. Mrlian 1; V. Vybíhal 1
; V. Juráň 1; M. Kýr 3; M. Smrčka 1
Authors‘ workplace:
Neurochirurgická klinika LF MU a FN Brno
1; Ústav patologické fyziologie LF MU, Brno
2; Klinika dětské onkologie LF MU a FN Brno
3
Published in:
Cesk Slov Neurol N 2014; 77/110(2): 196-201
Category:
Original Paper
Práce byla sponzorována grantem IG MZ ČR č. NT 11092- 4.
Overview
Objectives:
The aim of this study was to evaluate correlation between brain tissue oxygen level and transcranial dopplerometry (TCD) parameters in patients with severe subarachnoid hemorrhage (SAH).
Patients and methods:
Patients with subarachnoid hemorrhage from a rupture of cerebral vessel aneurysm and clinical status within the Hunt-Hess scale grade 4 (sopor) or 5 (coma) were enrolled into the study. Brain tissue oxygen monitoring (PbtO2, Licox system) was performed in addition to the standard ICU monitoring that includes TCD. The correlation between TCD and PbtO2 parameters was evaluated.
Results:
We enrolled a total of 27 patients, five patients were subsequently excluded for malposition or malfunction of the PbtO2 probe. There was a significant correlation between PbtO2 and both pulsatility index and resistivity index in ± 10 minute (PI: r = –0.4077, p = 0.0074; RI: r = –0.4055, p = 0.0077) and ± 60 minute intervals (PI: r = –0.4145, p =0.0064; RI: r = –0.4089, p = 0.007) with a node point corresponding to TCD measurement. There was no significant correlation between PbtO2 and any of the velocity parameters.
Conclusion:
PbtO2 monitoring provides information on brain tissue oxygenation and its microvasculature. However, there is no direct link between PbtO2 values and TCD velocities, the main characteristics of cerebral vasospasm. While we do not know the dynamics between velocities of the main cerebral vessels and PbtO2, the use of both PbtO2 monitoring and TCD seems to be appropriate for follow up of patients with severe SAH in clinical setting.
Key words:
subarachnoid hemorrhage – transcranial Doppler sonography – cerebral vasospasm
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Sources
1. Al‑ Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke 2010; 41(8): e519– e536.
2. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. The Lancet 2007; 369(9558): 306– 318.
3. van Gijn J, Rinkel GJ. Subarachnoid haemorrhage: diagnosis, causes and management. Brain 2001; 124(2): 249– 278.
4. Heros RC, Zervas NT, Varsos V. Cerebral vasospasm after subarachnoid hemorrhage: an update. Ann Neurol 1983; 14(6): 599– 608.
5. Kassell NF, Sasaki T, Colohan AR, Nazar G. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 1985; 16(4): 562– 572.
6. Al‑ Tamimi YZ, Orsi NM, Quinn AC, Homer‑ Vanniasinkam S, Ross SA. A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology. World Neurosurg 2010; 73(6): 654– 667.
7. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 1980; 6(1): 1– 9.
8. Weyer GW, Nolan CP, Macdonald RL. Evidence‑based cerebral vasospasm management. Neurosurg Focus 2006; 21(3): E8.
9. Rigamonti A, Ackery A, Baker AJ. Transcranial Doppler monitoring in subarachnoid hemorrhage: a critical tool in critical care. Can J Anesth 2008; 55(2): 112– 123.
10. Lysakowski C, Walder B, Costanza MC, Tramèr MR.Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: A systematic review. Stroke 2001; 32(10): 2292– 2298.
11. Munch E, Vajkoczy P. Current advances in the diagnosis of vasospasm. Neurol Res 2006; 28(7): 703– 712.
12. Hejčl A, Bolcha M, Procházka J, Sameš M. Multimodální monitorování mozku u pacientů s těžkým kraniocerebrálním traumatem a subarachnoidálním krvácením v neurointenzivní péči. Cesk Slov Neurol N 2009; 72/ 105(4): 383– 337.
13. Smrčka M. Monitoring pacientů s těžkým poraněním mozku. Cesk Slov Neurol N 2011; 74/ 107(1): 9– 20.
14. Smrčka M, Ďuriš K, Juráň V, Neuman E, Kýr M. Peroperační monitoring tkáňové oxymetrie a peroperační užití hypotermie v chirurgii mozkových aneuryzmat. Cesk Slov Neurol N 2009; 72/ 105(3): 245– 249.
15. Jarus‑ Dziedzic K, Bogucki J, Zub W. The influence of ruptured cerebral aneurysm localization on the blood flow velocity evaluated by transcranial Doppler ultrasonography. Neurol Res 2001; 23(1): 23– 28.
16. Nortje J, Gupta AK. The role of tissue oxygen monitoring in patients with acute brain injury. Br J Anaesth 2006; 97(1): 95– 106.
17. Kumar A, Brown R, Dhar R, Sampson T, Derdeyn CP,Moran CJ et al. Early vs. delayed cerebral infarction following aneurysm repair after subarachnoid hemorrhage. Neurosurgery 2013; 73(4): 617– 623.
18. Jödicke A, Hübner F, Böker DK. Monitoring of brain tissue oxygenation during aneurysm surgery: prediction of procedure‑related ischemic events. J Neurosurg 2003; 98(3): 515– 523.
19. Meixensberger J, Dings J, Kuhnigk H, Roosen K.Studies of tissue PO2 in normal and pathological human brain cortex. Acta Neurochir (Wien) 1993; 59 (Suppl): 58– 63.
20. Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS. Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med 1998; 26(9): 1576– 1581.
21. Schmidt JM, Ko SB, Helbok R, Kurtz P, Stuart RM, Presciutti M et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor‑ grade subarachnoid hemorrhage. Stroke 2011; 42(5): 1351– 1356.
22. Meixensberger J, Vath A, Jaeger M, Kunze E, Dings J, Roosen K. Monitoring of brain tissue oxygenation following severe subarachnoid hemorrhage. Neurol Res 2003; 25(5): 445– 450.
23. Dings J, Meixensberger J, Jäger A, Roosen K. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery 1998; 43(5): 1082– 1095.
24. Soehle M, Chatfield DA, Czosnyka M, Kirkpatrick PJ.Predictive value of initial clinical status, intracranial pressure and transcranial Doppler pulsatility after subarachnoid haemorrhage. Acta Neurochir (Wien) 2007; 149(6): 575– 583.
25. Nakagawa K, Ishibashi T, Matsushima M, Tanifuji Y,Amaki Y, Furuhata H. Does long‑term continuous transcranial Doppler monitoring require a pause for safer use? Cerebrovasc Dis 2007; 24(1): 27– 34.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2014 Issue 2
Most read in this issue
- Autonomic Dysreflexia – a Serious Complication of Spinal Cord Injury
- Dravet Syndrome: Severe Myoclonic Epilepsy in Infancy – Case Reports
- Normative Values of Nerve Conduction Studies of the Ulnar and Median Nerves Measured in a Standardized Way
- Neuromodulation