#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Using a Combination of Magnetic Resonance Techniques for Tumour Diagnosis


Authors: D. Wagnerová 1;  D. Urgošík 2,4;  M. Syrůček 3;  M. Hájek 1
Authors‘ workplace: Základna radiodiagnostiky a intervenční radiologie, Institut klinické a experimentální medicíny, Praha 1;  Odd. stereotaktické a radiační neurochirurgie, Nemocnice Na Homolce, Praha 2;  Odd. patologie, Nemocnice Na Homolce, Praha 3;  Neurologická klinika 1. LF UK a VFN v Praze 4
Published in: Cesk Slov Neurol N 2011; 74/107(2): 150-156
Category: Review Article

Overview

Correct and accurate diagnoses are essential for choosing the most successful treatment options for patients with tumours. While magnetic resonance imaging, computer tomography and positron-emission tomography have been used for some time in clinical practice as well-established diagnostic methods, it is a combination of these methods with proton MR spectroscopy (1H MR) that provides more precise information on the nature and extent of disability in patients with intracranial tumours. 1H MR spectroscopy non-invasively provides information on biochemical processes in the tumour. This comprehensive review summarises existing knowledge on metabolic changes in different types of tumours or other pathologies of the human brain reflected through magnetic resonance spectra and is concerned with the options currently available for using a combination of several MR diagnostic methods (MR imaging, spectroscopy, diffusometry, relaxometry) to determine the extent of the pathological process; knowledge of which is important for planning an appropriate therapy.

Key words:
tumours – MR spectroscopy – MR diffusion – correlation of methods


Sources

1. Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec 2002; 265: 54–84.

2. Sibtain NA, Howe FA, Saunders DE. The clinical value of proton mabnetic resonance spectroscopy in adult brain tumours. Clin Radiol 2007; 62(2): ­109–119.

3. Oh J, Cha S, Aiken AH, Han ET, Crane JC, Stainsby JA et al. Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. J Magn Reson Imaging 2005; 21(6): 701–708.

4. Dezortová M, Hájek M, Čáp F, Babiš M, Mališ J, Tichý M et al. MR spektroskopie při sledování nádorových onemocnění mozku. Kvalitativní interpretace 1H MR spekter. Cesk Slov Neurol N 1994; 57/90(4): 162–168.

5. Hajek M, Dezortova M. Introduction to clinical in vivo MR spectroscopy. Eur J Radiol 2008; 67(2): ­185–193.

6. Prosser V et al. Experimentální metody biofyziky. Praha: Academia 1989.

7. Dezortová M, Burian M, Hájek M. Stanovení absolutních a relativní koncentrace některých metabolitů v mozkové tkáni metodou 1H MR spektroskopie. Ces Radiol 1997; 51: 311–317.

8. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spektra. Magn Reson Med 1993; 30(6): 672–679.

9. Jíru F, Burian M, Skoch A, Hajek M. LC Model for spectroscopic imaging. Magn Reson Mater Phy 2003; 16 (Suppl 1): S211.

10. Stadlbauer A, Gruber S, Nimsky C, Fahlbusch R, Hammen T, Buslei R et al. Preoperative grading of ­gliomas by using metabolite quantification with high-spatial resolution proton MR spectroscopic imaging. Radiology 2006; 238(3): 958–969.

11. Jiru F, Skoch A, Klose U, Grodd W, Hajek M. Error images for spectroscopic imaging by LCModel using Cramer-Rao bounds. Magn Reson Mater Phy 2006; 19(1): 1–14.

12. Hájek M, Komárek V, Dezortová M, Hlavnička P, Šmejkalová M, Faladová L et al. Určování epileptogenního ložiska metodou 1H MR spektroskopie. Cesk Slov Neurol N 1995; 58/91(2): 103–107.

13. Hajek M, Krsek P, Dezortova M, Marusic P, ­Zamecnik J, Kyncl M et al. 1H MR spectroscopy in histopathological subgroups of mesial temporal lobe epilepsy. Eur Radiol 2009; 19(2): 400–408.

14. Gill SS, Thomas DG, Van Bruggen N, Gadian DG, Peden CJ, Bell JD et al. Proton MR spectroscopy of ­intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr 1990; 14(4): 497–504.

15. Gupta RK, Sinha U, Cloughesy TF, Alger JR. Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med 1999; 41(1): 2–7.

16. Castillo M, Smith JK, Kwock L. Correlation of myo-inositol levels and grading of cerebral astrocytomas. AJNR Am J Neuroradiol 2000; 21(9): 1645–1649.

17. Simone I, Federico F, Tortorella C, Andreula C, Zimatore G, Giannini P et al. Localized 1H-MR spectroscopy for metabolic characterisation of diffuse and focal brain lesions in patients infected with HIV. J Neurol Neurosurg Psychiatry 1998; 64(4): 516–523.

18. Chang L, Miller BL, McBride D, Cornford M, Oropilla G, Buchthal S et al. Brain lesions in patients with AIDS: H-1 MR spectroscopy. Radiology 1995; 197(2): 525–531.

19. Majos C, Alonso J, Aguilera C, Serrallonga M, Perez-Martin J, Acebes JJ et al. Proton magnetic resonance (H1 MRS) of human brain tumours: assessment of differences between tumour types and its applicability in brain tumour categorization. Eur Radiol 2003; 13(3): 582–591.

20. Ott D, Hennig J, Ernst T. Human brain tumours: assessment with in vivo proton MR spectroscopy. Radiology 1993; 186(3): 745–752.

21. Rock JP, Hearshen D, Scarpace LMS, Croteau D, Gutierrez J, Fisher JL et al. Correlation between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 2002; 51(4): 912–920.

22. Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed 2003; 16(3): 123–131.

23. Pierpaoli C, Jezzard P, Basser P, Barnett A, and Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996; 201(3): 637–648.

24. Krabbe K, Gideon P, Wagn P, Hansen U, Thomsen C, Madsen F. MR diffusion imaging of human intracranial tumors. Neuroradiology 1997; 39(7): ­483–489.

25. Wagnerova D, Jiru F, Dezortova M, Vargova L, ­Sykova E, Hajek M. The correlation between 1H MRS Choline concentrations and MR diffusion trace values in human brain tumors. Magn Reson Mater Phy 2009; 22(1): 19–31.

26. Yang D, Korogi Y, Sugahara T, Kitajima M, ­Shigematsu Y, Liang L et al. Cerebral gliomas: pro­spective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 2002; 44(8): 656–666.

27. Irwan R, Sijens PE, Potze JH, Oudkerk M. Correlation of proton MR spectroskopy and diffusion tensorimaging. Magn Reson Imaging 2005; 23(8): 851–858.

28. Catalaa I, Henry R, Dillon WP, Graves EE, McKnight TR, Lu Y et al. Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas. NMR Biomed 2006; 19(4): 463–475.

29. Khayal IS, Crawford FW, Saraswathy S, Lamborn KR, Chány SM, Cha S et al. Relationship between choline and apparent diffusion coefficient in patients with gliomas. J Magn Reson Imaging 2008; 27(4): 718–725.

30. Gupta RK, Cloughesy TF, Sinha U, Garakian J, ­Lazareff J, Rubino G et al. Relationships between ­choline magnetic resonance spectroscopy , apparent diffusion coeffcient and quantitative histopathology in human glioma. J Neurooncol 2000; 50(3): 215–226.

31. Jírů F, Hájek M. Correction for inhomogeneous B1 and B0 fields in water referenced spectroscopic imaging of the human brain. 26th Ann Sci Meeting ESMRMB 2009: 439.

Labels
Paediatric neurology Neurosurgery Neurology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#