#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Changes in the Nitric Oxide Synthase Activity in the Spinal Cord after Multiple Cauda Equina Constrictions in the Experiment


Authors: J. Kafka 1;  N. Lukáčová 2;  D. Čížková 2;  J. Maršala 2
Authors‘ workplace: Neurochirurgická klinika FNLP, Rastislavova 43, Košice 1;  Neurobiologický ústav SAV, Šoltésovej 4, Košice 2
Published in: Cesk Slov Neurol N 2007; 70/103(5): 505-511
Category: Original Paper

Podporené VEGA grantom 2/3217/23, 2/5134/25 a APVV grantom 51-01-3002.

Overview

Nitric oxide (NO) is known as a signalling molecule playing an important role in the pathophysiology of many neurodegenerative disorders. However, little is known about the role of NO in the pathogenesis of cauda equina syndrome. In the present study we investigated calcium-dependent nitric oxide synthase (NOS) activity in the Th1–Th12, L1–L3 and L4–L7 spinal cord segments divided into dorsal, medial and ventral parts and, neuronal NOS immunoreactivity (nNOS-IR) in L4–L7 segments after surgically-induced multiple cauda equina constrictions (MCEC) in the dog and after survival of experimental animals for 2 and 5 days. A significant increase of calcium-dependent NOS activity was noted in the dorsal part of thoracic and upper lumbar segments 2 days after MCEC. However, at 5th day the enzyme activity in the dorsal part of both above mentioned spinal cord segments was significantly decreased. No significant changes were noted in the dorsal part of L4–L6 segments. In the medial part of L4–L7 segments taken 2 days after MCEC, calcium-dependent NOS activity was only transiently enhanced; the value returned nearly to control level within 5 postconstriction days. MCEC, lasting for 2 days did not caused changes in enzyme activity in medial part of thoracic and upper lumbar segments. Significant differences were noted only 5 days after MCEC. The effect of MCEC on calcium-dependent NOS activity in the ventral part of thoracic, upper and lower lumbar segments was similar, showing a significant increase of enzyme activity in all segments studied, except for its decrease in the upper lumbar segments 5 days after postconstriction. The increase of calcium-dependent NOS activity in the lower lumbar segments correlates with increased number of NOS-IR neurons located in laminae VIII and IX and enhanced expression of NOS-IR axons in the ventrolateral column.

Key words:
cauda equina syndrome – nitric oxide synthase – spinal cord – dog


Sources

. Orendáčová J, Čížková D, Kafka J, Lukáčová N, Maršala M, Šulla I, Maršala J, Katsube N. Cauda equina syndrome. Prog Neurobiol 2001; 64: 613-637.

2. Dyck POJ, Thomas PK, Lambert EH, Bunge R. Peripheral neuropathy. 2nd ed. Philadelphia: WB Saunders 1984.

3. Stephenson GC, Gibson RM, Sonntag VKH. Who is to blame for the morbidity of acute cauda equina compression? J Neurol Neurosurg Psychiatry 1994; 57: 388.

4. Gleave JR, Macfarlane R. Cauda equina syndrome: what is the relationship between timing of surgery and outcome ? Br J Neurosurg 2002; 16: 325-328.

5. Hussain SA, Gullan RW, Chitnavis BP. Cauda equina syndrome: outcome and implications for managament. Br J Neurosurg 2003; 17:164-167.

6. Smyth MD, Peacock WJ. The surgical treatment of spasticity. Muscle Nerve 2000; 23: 153-163.

7. Sheean G. The pathophysiology of spasticity. Eur J Neurol 9Suppl 2002; 1: 3-9.

8. Lazorthes Y, Sol JC, Sallerin B, Verdie JC. The surgical management of spasticity.

Eur J Neurol 2002; 9(Suppl 11): 35-41.

9. Vizzard MA, Erickson K, de Groat WC. Localization of NADPH diaphorase in the thoracolumbar and sacrococcygeal spinal cord of the dog. J Auton Nerv Syst 1997; 64: 128-142.

10. Meller ST, Cummings CP, Traub RJ, Gebhart GF. The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat. Neuroscience 1994; 60: 367-374.

11. Wiertelak EP, Furness LE, Watkins LR Maier SF. Illness-induced hyperalgesia is mediated by a spinal NMDA-nitric oxide cascade. Brain Res 1994; 664: 9-16.

12. Hökfelt T, Zhang X., Wiesenfeld-Hallin Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 1994; 17: 22-30.

13. Salter M, Strijbos PLJM, Neale S, Duffy C, Follenfant RL, Garthwaites J. The nitric-oxide-cyclic GMP pathway is required for nociceptive signalling at specific loci wthin the somatosensory pathway. Neuroscience 1996; 73: 649-655.

14. Kaske A, Reinert A, Hoheisel U, Mense S. Nitric oxide synthase in rat dorsal horn neurones responds differentially to electrical stimulation of various afferent fibre populations. Soc Neurosci 1997; 23: 441.

15. Verge VM, Xu Z, Xu XJ, Wiesenfeld-Hallin Z, Hökfelt T. Marked increase in nitric oxide synthase mRNA in rat dorsal root ganglia after peripheral axotomy: in situ hybridization and functional studies. Proc Natl Acad Sci USA 1992; 89: 11617-1121.

16. Zhang X, Verge V, Wiesenfeld-Hallin Z, Ju G, Bredt D, Synder SH, Hokfelt T. Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy. J Comp Neurol 1993; 335: 563-575.

17. Lukáčová N, Čížková D, Križanová O, Pavel J, Maršala M, Maršala J. Peripheral axotomy affects nicotinamide adenine dinucleotide phosphate diaphorase and nitric oxide synthases in the spinal cord of the rabbit. J Neurosci Res 2003; 71: 300-313.

18. Steel JH, Terenghi G, Chung JM, Na HS, Carlton SM, Polak JM. Increased nitric oxide synthase immunoreactivity in rat dorsal root ganglia in a neuropathic pain model. Neurosci Lett 1994; 169: 81-84.

19. Choi Y, Raja SN, Moore LC, Tobin JR. Neuropathic pain in rats is associated with altered nitric oxide synthase activity in neural tissue. J Neurol Sci 1996; 138: 14-20.

20. Maršala J, Lukáčová N, Čížková D, Kafka J, Katsube N, Kuchárová K, Maršala M. The case for the bulbospinal respiratory nitric oxide synthase-immunoreactive pathway in the dog. Exp Neurol 2002; 177: 115-132.

21. Maršala J, Lukáčová N, Čížková D, Lukáč I, Kuchárová K, Maršala M. Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog. J Chem Neuroanat 2004; 27: 43-54.

22. Maršala J, Lukáčová N, Šulla I, Wohlfahrt P, Maršala M. The evidence for nitric oxide synthase immunopositivity in the monosynaptic Ia-motoneuron pathway of the dog. Exp Neurol 2005; 195: 161-178.

23. Maršala J, Lukáčová N, Kolesár D, Kuchárová K, Maršala M. Nitrergic proprioceptive afferents originating from quadriceps femoris muscle are related to monosynaptic Ia-motoneuron stretch reflex circuit in the dog. Cell Mol Neurobiol 2006; 26: 1385-1410.

24. Olmarker K, Takahashi K, Rydevik B. Anatomy and compression-pathophysiology of the nerve roots of the lumbar spine. In: Anderson GBJ, MacNeill T, editors. Spinal Stenosis. St. Louis: Mosby Year Book 1992: 77-90.

25. Maršala J, Šulla I, Jalč P, Orendáčová J. Multiple protracted cauda equina constrictions cause deep derangement in the lumbosacral spinal cord circuitry in the dog. Neurosci Lett 1995; 193: 97-100.

26. Cornefjord M, Olmarker K, Rydevik B, Nordborg C. Mechanical and biochemical injury of spinal nerve roots: a morphological and neurophysiological study. Eur Spine J 1996; 5: 187-192.

27. Yamaguchi K, Murakami M, Takahashi K, Moriya H, Tatsuoka H, Chiba T. Behavioral and morphologic studies of the chronically compressed cauda equina. Experimental model of lumbar spinal stenosis in the rat. Spine 1999; 24: 845-851.

28. Maršala J, Kafka J, Lukáčová N, Čížková D, Maršala M, Katsube N. Cauda equina syndrome and nitric oxide synthase immunoreactivity in the spinal cord of the dog. Physiol Res 2003; 52: 481-496.

29. Orendáčová J, Maršala M, Šulla I, Kafka J, Jalč P, Čížková D, Taira Y, Maršala J. Incipient cauda equina syndrome as a model of somatovisceral pain in dogs: spinal cord structures involved as revealed by the expression of c-fos and NADPH diaphorase activity. Neuroscience 2000; 95: 543-557.

30. Lukáčová N, Kafka J, Čížková D, Maršala M, Maršala J. The effect of cauda equina constriction on nitric oxide synthase activity. Neurochem Res 2004; 29: 429-439.

31. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 1990; 87: 682-685.

32. Herbison AE, Simonian SX, Norris PJ, Emson PC. Relationship of neuronal nitric oxide immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J Neuroendocrinol 1996; 8: 73-82.

33. Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 1990; 347: 768-770.

34. Iwamoto H, Kuwahara H, Matsuda H, Noriage A, Yamano Y. Production of chronic compression of the cauda equina in rats for use in studies of lumbar spinal canal stenosis. Spine 1995; 20: 2750-2757.

35. Sayegh FE, Kapetanos GA, Symeonides PP, Anogiannakis G, Madentzidis M. Functional outcome after experimental cauda equina compression. J Bone Joint Surg 1997; 79: 670-674.

36. Fiallos-Estrada CE, Kummer W, Mayer B, Bravo R, Zimmermann M, Herdegen T. Long-lasting increase of nitric oxide synthase immunoreactivity, NADPH-diaphorase reaction and c-JUN co-expression in rat dorsal root ganglion neurons following sciatic nerve transection. Neurosci Lett 1993; 150: 169-173.

37. Lukáčová N, Kolesárová M, Kuchárová K, Pavel J, Kolesár D, Radoňak J, Maršala M, Chalimoniuk M, Langfort J, Maršala J. The effect of a spinal cord hemisection on changes in nitric oxide synthase pools in the site of injury and in regions located far away from the injured site. Cell Mol Neurobiol 2006; 26: 1365-1383.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 5

2007 Issue 5

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#